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The XX International Congress on Mathematical Physics

The XX International Congress on Mathematical Physics

by BENJAMIN SCHLEIN (ICMP co-convenor, Zurich)

The XX International Congress on Mathematical Physics was held in Geneva, from August 2
to August 7, 2021. As usual, the Congress was preceded by a Young Researcher Symposium
(YRS), from July 29 to July 31. Additionally, two satellite meetings were held in Switzerland
before the Congress, a summer school on “Current topics in mathematical physics” in Zurich,
from July 19 to July 23, and a workshop on “Topological phases of matter” in Leysin from July
25 to July 28.

Because of the COVID-19 pandemic, YRS and ICMP were held in hybrid format, with
some participants and speakers in Geneva and some connected online from around the world.
The organization of the hybrid conference was challenging but it allowed us to reach more
participants, including several researchers who could not travel to Geneva, due to current travel
restrictions.

The YRS was held at the University of Geneva; there were 209 registered on-site partici-
pants and 164 registered online participants. The three main speakers were H. Duminil-Copin,
M. Hairer and M. Mariño. In the afternoons, there were 48 contributed talks, divided in the
four sessions Quantum Mechanics, Quantum Many Body and Quantum Information (organized
by M. Porta and R. Renner), Statistical Mechanics and Random Structures (organized by A.
Knowles and V. Tassion), Quantum Field Theory, Integrability and Strings (organized by N.
Beisert and J. Sonner), Partial Differential Equations, General Relativity and Dynamical Sys-
tems (organized by C. Saffirio and P. Hintz). Additionally, the eight session organisers gave
basic notion seminars to introduce participants to their fields.

The ICMP was held at the International Conference Centre in Geneva. There were 367
registered on-site participants as well as 273 registered online participants. We had 16 ple-
nary talks, given by V. Baladi, T. Bodineau, W. De Roeck, H. Duminil-Copin, M. Gualtieri,
P. Hintz, A. Kupiainen, J. Maldacena, N. Nekrasov, Y. Ogata, N. Reshetikhin, J.P. Solovej,
J. Szeftel, T. Vidick, F. Xu and H.-T. Yau. Additionally, there were 70 invited and 81 con-
tributed talks, divided in the thematic sessions Dynamical Systems (organized by D. Damanik,
C. Liverani), Equilibrium Statistical Mechanics (organized by A. Giuliani, Y. Velenik), Gen-
eral Relativity (organized by G. Holzhegel, G, Huisken), Integrable Systems (organized by G.
Felder, A. Pelayo), Many-body Quantum Systems and Condensed Matter Physics (organized
by R. Seiringer and S. Teufel), Nonequilibrium Statistical Mechanics (organized by T. Funaki,
P. Gonçalves), Partial Differential Equations (organized by L. Székelyhidi, V. Vicol), Prob-
ability and Random Structures (organized by G. Kozma, H. Weber), Quantum Field Theory
(organized by A. Cattaneo, J. Penedones), Quantum Information (organized by N. Datta, D.
Pérez-Garcia), Quantum Mechanics and Spectral Theory (organized by S. Jitomirskaya, G.
Panati), String Theory and Quantum Gravity (organized by S. L. Shatashvili, E. Verlinde).

During the opening ceremony, the President of the IAMP, B. Nachtergaele, announced the
winners of the 2021 Henri Poincaré Prize, sponsored by the Daniel Iagolnitzer Foundation: R.
Baxter (laudatio by V. Bazhanov), D. Christodoulou (laudatio by I. Rodnianski), Y. Ogata (lau-
datio by H. Tasaki) and J.P. Solovej (laudatio by S. Fournais). The winner of the IAMP Early
Career Award, sponsored by Springer, was then presented by S. Serfaty, the Vice President of
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ICMP 2024

the IAMP, to A. Aggarwal (laudatio by F. Toninelli). Finally, A. Joye, as Vice Chair of the C18
Commission of the IUPAP, announced the winners of the 2021 IUPAP Young Scientist Prize in
Mathematical Physics: S. Aretakis, C. Saffirio, V. Tassion.

On Monday afternoon there was a public lecture by Nobel laureate M. Mayor. On Wednes-
day afternoon, recipients of the “Annales Henri Poincaré Journal Prize” (represented by M.
Woods, D. Sutter, J. Bausch) and of the “Journal of Mathematical Physics Young Researcher
Award” (A. Lucas) gave talks in parallel sessions. On Friday at lunch time, there was a human-
rights session, devoted to the issue of gender balance and equal opportunities in mathematics
and physics.

ICMP 2024

The next International Congress on Mathematical Physics in 2024 will take place in Stras-
bourg, France. It will be organized jointly by the Mathematics and Physics Institutes of the
University of Strasbourg. The chair of the organizing committee is Nalini Anantharaman, as-
sisted by co-chairs Semyon Klevtsov, Clément Tauber, and Martin Vogel. The Congress will
take place at the main conference center of the city (Palais des Congrès), near the European
Parliament and well connected with the historical city center. It is planned to take place from
July 1 to July 6, 2024. The Young Researchers’ Symposium will take place right before the
ICMP, from June 28 through June 29, 2024, at the University of Strasbourg.

Save the date!
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Laudatio for Amol Aggarwal, Winner of The IAMP Early Career Award 2021

Laudatio for Amol Aggarwal, Winner of The IAMP Early Career

Award 2021

It is a pleasure and a honor to introduce to you Amol Aggarwal, who
receives today the 2021 IAMP Early Career Award. This prize was
attributed to him

“for fundamental contributions to the asymptotic analy-
sis of two-dimensional lattice models, including proving
the universality of local correlations for dimer models,
characterizing Gibbs measures and their current fluctua-
tions for the stochastic six vertex model, and providing
a rigorous framework for the tangent method of finding
boundaries of frozen regions in planar ice models.”

Amol Aggarwal’s (born 1993) CV in a few lines:

• Undergraduate studies at MIT

• In 2016, AMS Morgan prize for Outstanding Research by an Undergraduate Student.
Even before starting his PhD. thesis, Amol already had 4 articles published in leading
combinatorics journals!

• Amol received his PhD in 2020 from Harvard University, where he was advised by Alexei
Borodin (MIT).

• Just after that, in July, 2020, he was appointed as a Clay Research Fellow for a term of
five years and he is presently Assistant Professor at Columbia.

Amol’s research lies largely in the area between probability theory and combinatorics known
as “integrable probability,” with strong connections with mathematical physics, in particular in-
tegrable systems and out-of-equilibrium statistical mechanics (interacting particle systems and
stochastic growth processes). Let me say a few words about just a few among his (numerous)
ground-breaking achievements.

1. Universality for lozenge tiling local statistics (2019). This is perhaps my favorite
among Amol’s results, and it is very easy to formulate. The story starts with dimer
models, or random tilings, in 2 dimensions. As was observed by Cohn, Larsen and Propp
in ’98, typical random tilings of large planar domains show phase separation between
“frozen” and “rough” regions, separated by so-called frozen curves, or phase-separation
lines. Cohn-Kenyon-Propp in 2001 formulated the natural conjecture that the local be-
havior of such tiling models is always governed by translation invariant Gibbs measures.
Over the years, partial progress was achieved via heavy analytic tools (orthogonal poly-
nomials, asymptotics of Kasteleyn matrix) but only for very special domains (polygons
of a certain type). In a real tour de force, Amol proves the conjecture for dimers on
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Laudatio for Amol Aggarwal, Winner of The IAMP Early Career Award 2021

the hexagonal lattice in arbitrary domains. The proof of this claim is extremely multi-
faceted. It relies on deep results in the “exactly solvable” realm (integrable probability),
borrows some general intuition from Erdős-Schlein-Yau-et al.’s approach to universality
in random matrices and develops new regularity results in elliptic PDEs. From a personal
perspective, I was also thrilled to see that methods I had previously developed with B.
Laslier to study mixing properties of Glauber dynamics of tiling models played a role in
this fascinating story!

2. Arctic Boundaries of the Ice Model on Three-Bundle Domains (2018). For the dimer
model mentioned above, phase separation can be exhibited explicitly: frozen curves/limit
shapes can be computed exactly because the model is determinantal and the surface ten-
sion is explicitly computed. Things become much more challenging as soon as models
are not determinantal and maybe the most well-known example is the so-called “six ver-
tex model.” For a square domain with domain wall boundary conditions, phase separation
for this model at the “ice point” was predicted long ago by numerical simulations. A few
years ago, physicists Colomo and Sportiello derived an equation for the frozen curve
(which they predicted to be the union of explicit algebraic curves), using a non-rigorous
approach they called the “tangent method.” Amol was the first person to make the tan-
gent method rigorous, for the square ice model in a family of domains that included the
square with domain-wall boundary. Amol’s idea was to apply a formalism of Gibbs line
ensembles, developed previously in the context of random matrices and random growth
models, to prove certain stochastic monotonicity for lattice paths arising in square ice.

3. Another amazing work is Current Fluctuations of the Stationary ASEP and Six-
Vertex Model (2016). The Asymmetric Simple Exclusion Process (ASEP) in one di-
mension is a prototypical interacting particle system that has been studied in the last
decades in hundreds of papers, both by physicists and by mathematicians. One of the
key questions is its space-time fluctuation behavior at stationarity. In 1985, van Beijern,
Kutner and Spohn predicted anomalous behavior of the stationary ASEP along its char-
acteristic lines. They predicted the height function’s fluctuation exponent, and a later
work of Ferrari-Spohn in 2006 on a simpler model (known as TASEP) in the same KPZ
universality class predicted the asymptotic (large-time) distribution. It is that distribution
that Amol proved for the ASEP. He also proved a similar result for certain translation
invariant Gibbs measures of the six vertex model - again one of the very few rigorous
results known about fluctuations in this fundamental lattice model of Statistical Physics.

4. I’ll also mention the work Large Genus Asymptotics for Volumes of Strata of Abelian
Differentials (2018). This is very far from my area of expertise, but what I gathered from
experts is that Amol’s proof of a conjecture of Eskin and Zorich, describing large genus
asymptotics of the Masur-Veech volumes and the Siegel-Veech constants, is a major ad-
vance in geometric topology/dynamical systems.

Summarizing: just 5 years after starting his PhD thesis, Amol Aggarwal already emerges as
one of the most promising mathematical physicists of his generation. He has single-handedly
(all works mentioned above are authored by him alone!) solved several important conjectures
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Laudatio for Amol Aggarwal, Winner of The IAMP Early Career Award 2021

in mathematical physics, integrable probability, combinatorics, and well beyond. I am simply
amazed.

Congratulations Amol, and best wishes for a brilliant mathematical career!

Fabio Toninelli (TU Wien)
ICMP 2021 (Geneva)
2 August 2021
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Laudatio for Rodney J. Baxter, Laureate of the Henri Poincaré Prize 2021

Laudatio for Rodney J. Baxter, Laureate of the Henri Poincaré

Prize 2021

Rodney J. Baxter
Photo credit: George M. Bergman 1999, under the Creative Commons

Attribution-Share Alike 4.0 International license.

It is an honor and tremendous pleasure for me to say a few words about Rodney Baxter’s works
on this occasion for his richly deserved Henri Poincaré Prize in mathematical physics.

Rodney Baxter’s name is firmly associated with the most elegant mathematical discoveries
for at least two generations of theoretical physicists and mathematicians. Rodney graduated
from Trinity College Cambridge in 1961 and received his PhD from the Australian National
University (ANU) in 1964. Then after positions at the ANU and MIT he got a tenured position
at ANU. Interestingly, Rodney in his recent autobiography calls himself an ‘accidental aca-
demic’. Let me read the quote: “For the first 24 years of my life I had no intention of becoming
an academic. Rather I expected to earn my living as an employee of some large company, such
as the Iraq Petroleum Company that I joined in 1964 as a reservoir engineer. However, things
panned out differently and I’m very happy that they did. I’ve made a career as a mathematical
physicist, working on simple models of statistical mechanical systems, asking questions akin
to ‘why does water boil’, or ‘why does it freeze’ ... . I’ve been able to make some contribu-
tions to the subject.” We are all very happy that Rodney did become an academic! I first met
Rodney (in person) in 1989, more than 30 years ago, during the ‘Special year in Mathemati-
cal Physics’ program organised by Neil Trudinger’s ‘Centre for Mathematical Analysis’ at the
Australian National University. This was a start of my collaboration with Rodney in the area
of lattice models, which has been continuing for many years. Of course, previously, during
the 80’s, I and many of my colleagues in Russia had studied Rodney Baxter’s works. A typi-
cal state after such studies is a feeling of absolute and complete admiration of the beauty and
sophistication of his mathematical results. The effect is so strong that it is not unusual that at
international conferences people completely unknown to me come and ask ‘You are working
at the ANU, have you seen Professor Baxter?’, clearly indicating that that would be a notable
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event in their life. Baxter’s work has involved solving highly non-trivial mathematical problems
in the most brilliant way. In 1971 Baxter solved the eight-vertex model on the two-dimensional
lattice by inventing methods of such power and generality that the course of research in sta-
tistical mechanics was permanently altered. In 2000 we had an international conference in
Canberra, which was entitled ‘The Baxter Revolution in Mathematical Physics’ to emphasize
the broad impact of Baxter’s pioneering work in many branches of physics and mathematics.
Since then the scope of new application of Baxter’s work is only rapidly increasing. To date it
has completely revolutionized many areas of modern mathematics, including algebra, topology,
geometry and mathematical analysis. In physics, there are spectacular applications in statisti-
cal mechanics and condensed matter physics (such as quantum gases), in quantum field theory,
and most recently in string theory and high energy physics. This revolution originates in Bax-
ter’s brilliant inventions of what are now called the Yang-Baxter equation, the corner transfer
matrix, the commuting transfer matrices and functional relations for their eigenvalues. In his
pioneering paper on the hard-hexagon model Baxter has discovered the connections with the
Rogers-Ramanujan identities, which besides the exact results for expectation values has led to
a dual boson-fermion description for lattice models. Baxter’s work has also led to

1. The invention of quantum groups by Drinfeld and Jimbo, who have been honoured for
their work by the Fields Medal for Drinfeld in 1990 and the Wigner Medal for Jimbo in
2010.

2. The discovery of a knot invariant by Jones, who was honoured by the Fields Medal in
1990.

3. The development by Sklyanin, Takhtajan and Faddeev of the powerful Quantum Inverse
Scattering Methods for solving models of statistical mechanics and quantum field theory.

4. The connection of Gauge/String theory and 2D integrable system (Maldacena, Minahan-
Zarembo, Costello-Witten-Yamazaki and many others).

Baxter’s work has inspired many other developments by researchers around the world, includ-
ing Andrews, Au-Yang, McCoy, Perk and Tracy in the USA; Belavin, Fateev, Zamolodchikov,
Tsvelik, Wiegmann, Korepin, Kirillov, Smirnov and Reshetikhin in Russia; Date, Miwa and
Jimbo in Japan; Maillet, Pasquier and Saleur in France; Pearce and Forrester in Australia;
Mussardo in Italy among others of that generation. Isaac Newton said “If I have seen further,
it is by standing on the shoulders of giants.” He was referring to Copernicus, Galileo and Ke-
pler. There is no doubt that Prof. Baxter is a giant who has brought the torch of mathematical
physics into the 21-st century. Rephrasing Newton, I would say, “We are able to see further,
because of the outstanding work of Professor Baxter.”

Please join me to congratulate Professor Baxter on the award of the Henri Poincaré Prize in
Mathematical Physics.

Vladimir Bazhanov (Australian National University)
ICMP 2021 (Geneva)
2 August 2021
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Laudatio for Demetri Christodoulou, Laureate of the Henri Poincaré Prize 2021

Laudatio for Demetri Christodoulou, Laureate of the Henri

Poincaré Prize 2021

It is a great honor for me to introduce Demetri Christodoulou, a
laureate of the 2021 Poincaré Prize, awarded

“for pathbreaking contributions to mathematical un-
derstanding of the Einstein equations, including fun-
damental results on black-hole formation and the
discovery of a nonlinear memory effect in the the-
ory of gravitational radiation, and for introducing a
powerful geometric point of view for the problem of
shock formation for compressible fluids.”

Demetri Christodoulou is a singular mathematician whose work has had a profound impact on
the fields of general relativity, hyperbolic partial differential equations, and fluid dynamics.

Even though I described him as a mathematician, Demetri started his journey in the Physics
Department. He received his PhD in physics at Princeton at the age of 19 under the direction of
Johny Wheeler. His thesis showed existence of an irreducible mass of a black hole and played a
key role in the development of black-hole thermodynamics. It has been reported that Demetri’s
original thesis problem, which he was unable to solve at the time, was a bit more challenging
and its solution required a 40 year detour.

This detour took Demetri first to mathematics and then to the point of view, his point of
view, which sees general relativity as the arena of partial differential equations and geometry.

One of the early successes of this philosophy was his work throughout the 80’s and the
early 90’s on the spherically symmetric Einstein-scalar field model. Here, Demetri proved a
slew of remarkable results, giving an almost complete description of large data dynamics and
establishing a very satisfying dichotomy: for generic initial data, gravitational and scalar waves
either disperse and the spacetime converges to the flat Minkowski space, or a black hole with
the exterior which converges to Schwarzschild forms. The generic caveat is crucial, for he also
found exotic solutions containing so called naked singularities which, mercifully, turned out to
be unstable. This circle of ideas was also an inspiration behind the discovery and the study of
the so called critical phenomena in numerical relativity, in which one probes the universality of
behavior on the boundary in transition from ‘regular’ to ‘singular’ regime.

A truly watershed moment was his proof, in 1993, jointly with Klainerman, of stability of
Minkowski space. This was not just a fundamental result but it gave birth to the synthesis of
Lorentzian geometry and hyperbolic PDE’s. Its lasting impact is still felt today. This work,
among other things, established the laws of gravitational radiation and led Demetri to the dis-
covery of the nonlinear gravitational memory effect – a measurable phenomenon in which a
wave train causes a permanent relative displacements of test masses. This is now known as the
Christodoulou memory effect.

In 2009 Demetri returned to his original thesis problem, his pièce de résistance – the prob-
lem of black-hole formation. Here, the story begins with the Penrose’s incompleteness theorem
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from 1965 which guarantees geodesic incompleteness of any spacetime satisfying a null-energy
condition, possessing a non-compact Cauchy hypersurface, and also, crucially, a 2-d trapped
surface. For all the incredible importance and influence of this result, it fails to address if this
type of geodesic incompleteness (colloquially referred to as singularity) can develop in evolu-
tion. Yet, this result lies at the foundation of all of our current understanding of the predicted
theory of gravitational collapse and, in particular, its mechanism of black-hole formation. With
trapped surfaces being a characteristic feature of black holes, this boils down to the question of
evolutionary formation of trapped surfaces.

The problem lay dormant for 40 years until it was solved in 2009 by Christodoulou for the
problem without matter (note that matter makes black-hole formation easier) and without sym-
metry. It was a remarkable tour de force. The basis of it was an astonishing insight identifying
a whole class of initial data which, on one hand are sufficiently large, since this phenomenon
requires a strong gravitational field regime, while, on the other, still allows one to control the
dynamics all the way to the eventual formation of a trapped surface. The appropriate data
turned out to correspond to sharp directional bursts of curvature. It takes a painstaking analysis
and a deep understanding of the algebraic structure of the Einstein equations to construct the
necessary large enough portion of spacetime. It turned out to be an even more powerful idea
when viewed in a more general PDE context

After that or, actually, already slightly before, Demetri turned to an even older subject – dy-
namics of 3-dimensional compressible fluids governed by the Euler equations. A fundamental
feature of these equations is that its solutions develop shock singularities even when gener-
ated by smooth and, even more remarkably, small data. This is a classical phenomena much
studied in the literature going back to Riemann and Stokes. The 20th century development of
the subject was focused on creating a framework accommodating global solutions containing
shocks. This became tractable only for the 1-dimensional equations and was based on analysis
associated with the functions of bounded variation with the pioneer- ing work by Glimm, Lax,
Oleynik, Kruzkov and others. In higher dimensions, including the physical 3-dimensional case,
conceptual and analytical difficulties were very high and progress very slow.

In 2007 Christodoulou published a monograph containing a proof of shock formation for
the 3-dimensional relativistic Euler equations. There, he identified a precise class of initial
data for which he constructed a maximal Cauchy development with a singular boundary and
gave a complete geometric description of both the boundary and of the singular behavior of
solutions. The result was a consequence of a completely novel geometric point of view on
the problem. The corresponding results for the Newtonian case were given a self-contained
adaption by Christodoulou-Miao in 2012.

It turns out that part of the constructed Cauchy development becomes unphysical and has
to be replaced by a physical solution containing a shock which emanates from the first singular
surface. This is the problem of shock development, which, once again, was solved by Demetri
in his monumental work in 2017, albeit in the restricted irrotational context.

These works signify the dawn of new era in the study of higher dimensional compressible
fluid dynamics, or more general classes of equations admitting shocks, whose ultimate horizon
is perhaps to supersede the global theory of weak shock admitting solutions, developed in the
1-dimensional case.
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Let me conclude by saying that Christodoulou’s impact on general relativity, fluid dynamics
and PDE’s can not be overstated. It will be absorbed, internalized, and felt for many years to
come. Demetri’s career took him from Princeton, to Caltech, to Munich, to Syracuse, to New
York, back to Princeton and then to Zurich. It was said about Feynman that the productivity
of his colleagues was inversely proportionate to the distance from their offices to his. I think
a bigger compliment might be the opposite statement. For Demetri, this can be attested by
generations of mathematicians who have read and tried to digest Demetri’s papers and books.
I, personally, was fortunate enough to meet Demetri when I came to Princeton and then be
influenced by his work over the years, so I was lucky to benefit from both.

I would like to offer Demetri again my warmest congratulations on his outstanding achievement
in winning the 2021 Henri Poincaré Prize.

Igor Rodnianski (Princeton University)
ICMP 2021 (Geneva)
2 August 2021
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Laudatio for Yoshiko Ogata, Laureate of the Henri Poincaré

Prize 2021

It is my great pleasure and honor to briefly discuss Yoshiko Ogata’s
research accomplishments on this occasion of her Poincaré prize. The
citation of the prize reads:

“For groundbreaking work on the mathematical theory of
quantum spin systems, ranging from the formulation of
Onsager reciprocity relations to innovative contributions
to the theory of matrix product states and of symmetry-
protected topological phases of infinite quantum spin
chains.”

Yoshiko received her PhD from the University of Tokyo, where she was a physics major. She
was a postdoc at University of Marseille and UC Davis, and then joined Kyushu University as
a faculty member. In 2009, she moved to the department of mathematics of the University of
Tokyo, where she is now a full professor.

Yoshiko has been working on problems in quantum many-body systems by using the op-
erator algebraic formulation. She has solved, and is solving, a variety of the most difficult
problems in physics that involve infinite degrees of freedom by developing precise, sometimes
deep, mathematical tools. Let me discuss some examples.

With Vojkan Jaksic and Claude-Alain Pillet, Yoshiko studied the general problem of non-
equilibrium steady states, and justified the linear response theory, especially the Onsager re-
ciprocal relations. The Onsager relations are still among the most essential results in non-
equilibrium physics, and I would say that this is a fundamental contribution to a traditional
problem in physics.

In the field of quantum spin systems, Yoshiko has made several fundamental contributions
on problems that are fashionable even in the physics community.

To explain her contributions, I would like to recall Duncan Haldane’s famous discovery,
which brought him the 2016 Nobel prize in physics, about low-energy properties of the antifer-
romagnetic Heisenberg chain, whose Hamiltonian is

H =
∑
j∈Z

Sj · Sj+1,

where (Sj)
2 = S(S + 1) with the spin quantum number S = 1/2, 1/3/2, . . .. Haldane conjec-

tured that when, and only when, S is an integer this model has a unique gapped ground state,
namely, a unique ground state accompanied by a nonzero energy gap immediately above the
ground state energy.

This conjecture has not yet been solved, but it was proved that a similar Hamiltonian

H1 =
∑
j∈Z

Sj · Sj+1 +
1

3
(Sj · Sj+1)2,
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with S = 1 has a unique gapped ground state which is believed to be qualitatively similar to
the ground state of the original Heisenberg chain. But it is also easy to write down a model that
has a unique gapped ground state for a trivial reason. For example the S = 1 chain with the
Hamiltonian

H0 =
∑
j∈Z

(Sz
j )

2

clearly has a unique gapped ground state, which is the tensor product of the eigenstate |0〉j of
Sz
j . It is then natural to ask whether these two ground states are “smoothly connected.”

To be precise we say that the models with H0 and H1 are smoothly connected if there exists
a family of HamiltoniansHs, where s ∈ [0, 1], with a unique gapped ground state that smoothly
interpolates betweenH0 andH1. It was conjectured by Chen, Gu, and Wen in 2011 thatH0 and
H1 are indeed smoothly connected if one is allowed to use any short ranged Hamiltonian Hs to
interpolate between them. This fact is now known rigorously. It follows, e.g., from Yoshiko’s
extensive classification theory of matrix product states published in 2016 and 2017 as a trilogy
in Communications in Mathematical Physics.

But this is not the end of the story. Recall that bothH0 andH1 have time-reversal symmetry,
i.e., invariance under the transformation Sj → −Sj for all j ∈ Z. It was conjectured by Gu
and Wen in 2009 that if we require interpolating Hamiltonians Hs to also possess time-reversal
symmetry then H0 and H1 are never connected smoothly. In this case the models with H0 and
H1 are said to belong to different symmetry protected topological phases. This is indeed the
fact that Yoshiko proved in her ground-breaking paper appeared in 2018 and published in CMP
last year. In this and the following paper published this year in CMP, Yoshiko defined indices
for a unique gapped ground state of a spin chain with certain symmetry. The indices take
value in the second group cohomology H2(G,U(1)) of the symmetry group, and are proved
to provide classifications of symmetry protected topological phases. We should note that such
indices were already defined by Pollmann, Turner, Berg, and Oshikawa back in 2010, but only
for a limited class of states, namely, injective matrix product states, while Yoshiko’s index
theories cover an arbitrary unique gapped ground state. In this sense we can say that Yoshiko
has completed the theory of symmetry protected topological phases in quantum spin chains.
It is simply amazing that fully rigorous and general mathematical theory was developed only
nine years after the original heuristic proposal. But this is not yet the end of the story. Yoshiko
never stops. She has already completed the theory of symmetry protected topological phases
of two-dimensional quantum spin systems, as we can hear from her in the next session!

I cannot help discussing one more work of Yoshiko’s which is my favorite (and Yoshiko’s
favorite too, I hear). Suppose that there are n sequences of hermitian matrices H(1)

i , . . . , H
(n)
i

with i ∈ N which commute with each other asymptotically, i.e.,

lim
i↑∞
‖[H(α)

i , H
(β)
i ]‖ = 0,

for any α, β = 1, . . . , n. We then ask whether the sequences of matrices can be approximated
by sequences of mutually commuting hermitian matrices, more precisely, whether there exist
n sequences of hermitian matrices Y (1)

i , . . . , Y
(n)
i such that

[Y
(α)
i , Y

(β)
i ] = 0,
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for all α, β = 1, . . . , n and i ∈ N, and

lim
i↑∞
‖H(α)

i − Y (α)
i ‖ = 0,

for all α = 1, . . . , n.
This is indeed a famous classical problem, and it is well known that such commuting ap-

proximations do not exist in general if n ≥ 3. In her paper in 2013 published in Journal of
Functional Analysis, Yoshiko proved that commuting approximations always exist if the origi-
nal non-commuting matrices are taken as the densities of extensive quantities of a quantum spin
system. This result is natural for physicists since thermodynamics is a classical theory where
all quantities commute, and these densities are precisely thermodynamic objects.

To prove the theorem, Yoshiko studies projections onto the spaces where these extensive
quantities take almost constant values, and then estimates the ranks of the projections by means
of the entropy functions. This estimate, with an operator algebraic technique, enables her to
construct the desired set of commuting matrices. I would say that the proof is an example of
ideal combination of ideas from statistical mechanics and techniques from operator algebra.

For me , It was a truly exciting experience to witness rapid progress in mathematical physics
made by Yoshiko. But I am sure that this is far from the end. I am looking forward to many
more new beautiful insights from Yoshiko.

I would like to end by congratulating Yoshiko on this occasion of her winning the Henri
Poincaré Prize.

Hal Tasaki (Gakushuin University)
ICMP 2021 (Geneva)
2 August 2021
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Laudatio for Jan Philip Solovej, Laureate of the Henri Poincaré

Prize 2021

It is an honor and a privilege to present to you Jan
Philip Solovej, who receives the Henri Poincaré prize
2021

“for outstanding contributions to the
analysis of quantum many-body prob-
lems ranging from the electronic struc-
ture of large atoms to the Lee-Huang-
Yang asymptotics of the ground state en-
ergy of dilute Bose gases.”

Jan Philip received his Ph.D. from Princeton University in 1989 with Elliott Lieb as advisor
and with a thesis entitled “Universality in the Thomas-Fermi-von Weizsäcker model of atoms
and molecules.” At that time, the study of large atoms was one of the central questions in
mathematical physics. To set the stage, the famous “2Z + 1”-bound of Lieb had just appeared
in 1984, and the papers by Hughes and by Siedentop and Weikard on the Scott correction
must have been written up during Jan Philip’s time as a graduate student— just to mention
some of the important developments of the time. It appears clear that Jan Philip got strongly
motivated for settling the important question of the maximum possible ionization of an isolated,
non-relativistic atom while in Princeton. The ionization conjecture states that this ionization,
i.e. the maximum number of electrons that can be bound to the nucleus minus the nuclear
charge, is bounded by a universal constant independent of the nuclear charge. It is one the
main achievements of Jan Philip to have proved this conjecture in the Hartree-Fock model; first
in 1991 in a reduced Hartree-Fock model and later in 2003 in the full Hartree-Fock theory of
atoms. The conjecture for the full quantum mechanical many-body problem remains open, but
I am convinced that Jan Philip has not yet given up on proving it!

The subjects of semiclassical analysis, electronic structure, and stability of matter, are
strongly intertwined. Jan Philip has made important contributions to them all. Let me here
only briefly mention some. One highlight is the influential works, with Lieb and Yngvason,
on semi-classical analysis and “Magnetic Thomas-Fermi Theory” in the presence of strong
magnetic fields. Of fundamental importance is the beautiful proof with Lieb and Loss of sta-
bility of matter with magnetic fields. Together with Erdős he proved strong Lieb-Thirring type
inequalities with variable magnetic fields and studied the structure of magnetic zero- modes.
Also the proof, with Spitzer and Sørensen, of the Scott correction for a model of an atom in-
cluding (some) relativistic effects deserves mentioning. Together with Erdős and myself, he
proved semi-classical results for large atoms, including the Scott correction, in a model with
self-generated magnetic fields.

It is also important here to mention the rigorous derivation in 2012 with Frank, Hainzl,
and Seiringer of the Ginzburg-Landau theory of superconductivity from the underlying BCS-
theory.
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Another highlight in the list of scientific achievements of Jan Philip is the proof of the Lee-
Huang-Yang term in the ground state energy of dilute Bose gases. The road to this proof is
also long, and shows a determination and a willingness to work hard and develop the necessary
tools along the way. An early milestone is the proof, joint with Elliott Lieb, of the formula for
the ground state energy of the 1- and 2-component Bose fluid (jellium) in the large density limit
in 2001 and 2004. In these works it is used that a simple “completion of the square”-version of
Bogoliubov’s diagonalization of quadratic Hamiltonians is a sufficient and robust tool for lower
bounds, and localization techniques that do not disturb the condensate are developed. These
tools were then sharpened over the years. Let me in passing mention the strongly influential
lecture notes from Jan Philip’s course on Many-Body Quantum Mechanics during his semester
as Mercator Guest Professor at the LMU, Munich in 2007. Our final joint proof in 2020 of
the Lee-Huang-Yang correction term to the ground state energy of dilute Bose gases in the
thermodynamic limit, combines versions of these techniques, with another “completion of the
square” argument to take care of the correlation terms between excited pairs in the gas—an
argument that has its roots in a paper he wrote with Gian Michele Graf in 1994—as well as
the understanding that the remaining terms not present in Bogoliubov’s calculation effectively
cancel each other out.

In 1995, I started as a graduate student with Jan Philip, who had just returned to Denmark
from the US, as advisor. My choice of advisor was only based on the suggestion of a trusted
professor. This leap of faith has turned out to be one of the best decisions of my life! As the
many postdocs and graduate students who have had the luck to work with Jan Philip can testify,
he is a wonderful mentor and a generous and insightful scientist, who is never satisfied with
the easy, partial solution, but aims for real progress and understanding. This generosity and
insight has benefitted a large part of a generation of mathematical physicists in Europe, starting
in the 1990’s with European Research Networks with Jan Philip as an important participant
and more recently with members and visitors of his group supported by the ERC and later the
QMATH-centre funded by the Villum Foundation. I am convinced that I speak on behalf of all
these mathematical physicists when I take this occasion to thank him for his wonderful gift of
scientific inspiration.

Jan Philip Solovej has solved major, long-standing open problems in the field of mathe-
matical physics and in the process developed the necessary novel tools without ever losing the
balance between mathematical beauty and relevance for physics. This has enriched our field.
He is a most worthy recipient of the Poincaré prize 2021, and I look forward to many more
breakthroughs and inspiring discussions in his office at the H. C. Ørsted Institute in Copen-
hagen.

Congratulations to Jan Philip and a deeply felt “Thank you!”

Søren Fournais (Aarhus University)
ICMP 2021 (Geneva)
2 August 2021

Photos of Jan Philip Solovej courtesy of : Jim Hoyer, UCPH (front page); Anders Fjeldberg (preceding
page)
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In Memoriam: Freeman Dyson (1923–2020)

by GEORGE E. ANDREWS, JÜRG FRÖHLICH, and ANDREW V. SILLS

Freeman Dyson, March 13, 2011.

1 A Brief Biography
1.1 Personal background

Freeman John Dyson was born in Crowthorne, Berkshire, in the United Kingdom, on December
15, 1923. His father was the musician and composer Sir George Dyson; his mother, Mildred
Lucy, née Atkey, was a lawyer who later became a social worker. Freeman had an older sister,
Alice, who said that, as a boy, he was constantly calculating and was always surrounded by
encyclopedias. According to his own testimony, Freeman became interested in mathematics
and astronomy around age six.
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At the age of twelve, he won the first place in a scholarship examination to Winchester
College, where his father was the Director of Music; one of the early manifestations of Free-
man’s extraordinary talent. Dyson described his education at Winchester as follows: the official
curriculum at the College was more or less limited to imparting basic skills in languages and
in mathematics; everything else was in the responsibility of the students. In the company of
some of his fellow students, he thus tried to absorb whatever he found interesting, wherever he
could find it. That included, for example, basic Russian that he needed in order to be able to
understand Vinogradov’s Introduction to the Theory of Numbers.

In 1941, Dyson won a scholarship to Trinity College in Cambridge. He studied physics with
Paul Dirac and Sir Arthur Eddington and mathematics with G. H. Hardy, J. E. Littlewood, and
Abram Besicovich, the latter apparently having the strongest influence on his early development
and scientific style. Dyson’s knowledge of Russian came in handy, as Besicovich preferred to
converse with Dyson in Russian. Dyson published several excellent papers on problems in
number theory, analysis, and algebraic topology. Politically, he considered himself to be a
socialist.

During the war, at the age of nineteen, Dyson was assigned to the Royal Air Force’s Bomber
Command, where he developed methods for calculating the optimal density of bombers in
formations to hit German targets. In 1945, he was awarded a BA in mathematics. He became
a fellow of Trinity College (1946–1949), where he occupied a room just below the philosopher
Ludwig Wittgenstein. After having read Heitler’s Quantum Theory of Radiation and the Smyth
Report on the Manhattan Project, Dyson concluded that “Physics would be a major stream of
scientific progress, during the next twenty five years,” and he decided to trade mathematics for
theoretical physics.

In 1947, Dyson won a Commonwealth Fund Fellowship and applied to become a grad-
uate student of Hans Bethe at Cornell University. It may be surprising that he decided to
leave Cambridge, where Eddington, Kemmer, and Dirac taught, and move to America. Dyson
wrote [14, Chapter 1]:

Scientists come in two varieties, hedgehogs and foxes. I borrow this terminol-
ogy from Isaiah Berlin, who borrowed it from the ancient Greek poet Archilochus.
. . . [Foxes] know many tricks, hedgehogs only one. Foxes are broad, while hedge-
hogs are deep. Foxes are interested in everything and move easily from one prob-
lem to another. Hedgehogs are only interested in a few problems that they consider
fundamental, and stick with the same problems for years or decades. [...] Some
periods in the history of science are good times for hedgehogs, while other periods
are good times for foxes. The beginning of the twentieth century was good for
hedgehogs. [...] [I]n the middle of the century, the foundations were firm and the
universe was wide open for foxes to explore.

Obviously, Freeman Dyson was the archetypal “fox,” and the period in physics when he started
to do research and scored his first great successes was exactly right for foxes. He was so much
a fox that he never got around to getting his doctoral degree. Of course, he did not need to. He
was offered a professorship at Cornell University in 1951, to work with Hans Bethe essentially
as a replacement for Richard Feynman, who had left for Caltech a year earlier. Dyson wrote
about the time he spent at Cornell [8, p. 18]:
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I enjoyed teaching students in class-room courses, and I enjoyed talking to them
individually about science, but I did not enjoy being responsible for dragging them
through the three-year treadmill of Ph.D. thesis research. From this unhappy sit-
uation, I was rescued by the offer of a Professorship at the Institute for Advanced
Study. I loved Cornell and I loved Hans Bethe, but I hated the Ph.D. system to
which my students were tied. The Institute suited my style of work much bet-
ter. The life-cycle of the Institute is one year long, with a fresh crowd of visiting
members arriving each September. The annual cycle is well matched to my short
attention-span. . . . With some regret but more relief, I left Cornell in June 1953 and
took up my new position in Princeton in September. I was delighted to have a posi-
tion in which I would never again be responsible for a Ph.D. For the rest of my life
I have been fighting ineffectually against the ever-tightening grip of the Ph.D. sys-
tem on young people wishing to pursue careers in science. I am eternally grateful
to Cornell for accepting me as a professor in 1951 without a Ph.D. Unfortunately,
the liberality with which Cornell treated me did not extend to my students.

Dyson had married Verena Huber-Dyson in 1950. They had two children (Esther and
George), but the marriage ended in divorce in 1958. In 1957, Dyson became a citizen of the
United States. In 1958, he married Imme Jung, and together they had four children (Dorothy,
Mia, Rebecca, and Emily). Dyson was a family man, and he seemed to greatly enjoy the
company of his own six as well as other children.

1.2 Some of Dyson’s key contributions to theoretical physics

At the time Dyson started his career in physics, quantum field theory was in a messy state.
Dirac and Werner Heisenberg thought that, in a revolution similar to the one that gave birth to
quantum mechanics, relativistic quantum field theory (RQFT1) would eventually be superseded
by a mathematically meaningful theory unifying quantum theory with relativity theory. Dyson
concluded that what was necessary was to clarify the intricacies of the existing formalism of
RQFT and to then use it to do concrete calculations explaining new experimental data. In
Cambridge, Dyson had learned some quantum field theory from his friend Nicholas Kemmer
and from a book by Gregor Wentzel. Dyson wrote [8, p. 12]:

It was my luck that I arrived with this gift from Europe just at the moment when the
new precise experiments of Lamb and others [. . . ] required quantum field theory
for their correct interpretation. When I used quantum field theory to calculate an
experimental number, the Lamb shift [. . . ], Bethe was impressed.

Dyson’s principal contribution to quantum field theory was, however, to unify the ap-
proaches to quantum electrodynamics (QED), the quantum theory of electrons, positrons, and
photons, that had been proposed by Feynman, Julian Schwinger, and Shin’ichirō Tomonaga,
a little earlier. This unification work was facilitated by a cross-country road trip, from Ithaca,

1One referee pointed out that many would prefer the abbreviation “QFT” over “RQFT” since although non-
relativistic quantum field theories do exist, the relativistic variety is the standard, and certainly the kind on which
Dirac, Feynman, and Dyson focused.
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New York, to Albuquerque, New Mexico, that Dyson took with Feynman in June 1948, joyfully
recounted by Dyson in Chapter 6 of [6]. After parting company with Feynman in Albuquerque,
Dyson rode a sequence of Greyhound buses to Ann Arbor, Michigan, where he attended a series
of lectures by Schwinger, and had many conversations with him over a five-week period. From
Ann Arbor, he took a Greyhound bus to California, where he spent ten days. As the summer
was winding down, he headed back east to Cornell. Dyson described the crucial insights he
gained on this leg of the journey as follows [6, p. 67]:

Feynman’s pictures and Schwinger’s equations began sorting themselves out in my
head with a clarity they never had before. For the first time I was able to put them
all together. For an hour or two I arranged and rearranged the pieces. Then I knew
that they all fitted. I had no pencil or paper, but everything was so clear I did not
need to write it down. Feynman and Schwinger were just looking at the same set
of ideas from two different sides. Putting their methods together, you would have
a theory of quantum electrodynamics that combined the mathematical precision
of Schwinger with the practical flexibility of Feynman. Finally, there would be a
straightforward theory of the middle ground. It was my tremendous luck and I was
the only person who really had the chance to talk at length to both Schwinger and
Feynman and really understand what both of them were doing.

Feynman, Schwinger, and Tomonaga shared the 1965 Nobel Prize for their contributions to
quantum electrodynamics. Dyson discovered the right general concepts and methods, in par-
ticular a Lorentz-covariant form of perturbation theory for the scattering matrix, involving the
systematic use of what are now universally called Feynman diagrams, and renormalization the-
ory [5], to convert RQFT into something considerably more compelling than a machine spitting
out numbers that miraculously fit experimental data. In developing renormalization theory he
understood the importance of “scale separation” in RQFT, an idea that later gave rise to the
so-called renormalization group, an important paradigm developed primarily by Wilson, who
greatly generalized ideas of Stückelberg and Petermann and of Gell-Mann and Low. Dyson
generously shared his understanding of quantum field theory with Bethe and Feynman, and ex-
plained the latter’s ideas to people preferring Schwinger’s over Feynman’s approach to RQFT,
such as J. Robert Oppenheimer, who had become the director of the Institute for Advanced
Study.

Since Dyson was a “fox,” it is unimaginable that he would work in the same field for more
than a year or so at a time. Indeed, right after his initial successes with QED (and with meson
theory), he moved on to work on problems in statistical mechanics and solid-state physics.

Dyson’s ideas and results in statistical mechanics and condensed matter physics, among
them his proof, with Andrew Lenard, of “Stability of Matter,” inspired a tremendous amount of
important work by younger colleagues, among whom one should mention Elliott H. Lieb, who
pursued many of the themes Dyson had set with admirable success.

Dyson has made many further seminal contributions to mathematical physics, applied math-
ematics, and engineering. Of particular note is his deep work on random matrix theory (RMT),
originally initiated by Eugene P. Wigner in work on the energy spectra of heavy nuclei. Dyson’s
insights have inspired numerous applications of RMT; for example, to number theory (work of
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Hugh L. Montgomery on the zeros of the Riemann zeta function). More recently, “Dyson’s
Brownian motion” has become a very powerful tool to prove new results in RMT.

1.3 Some of Dyson’s key contributions to mathematics

1.3.1. The rank and crank of a partition. In one of his earliest papers [4], published when he
was a 20-year-old undergraduate at Cambridge, Dyson wrote:

Professor Littlewood, when he makes use of an algebraic identity, always saves
himself the trouble of proving it; he maintains that an identity, if true, can be veri-
fied in a few lines by anybody obtuse enough to feel the need of verification. My
object in the following pages is to confute this assertion. . . . The plan of my argu-
ment is as follows. After a few preliminaries I state certain properties of partitions
which I am unable to prove: these guesses are then transformed into algebraic iden-
tities which are also unproved,. . . finally, I indulge in some even vaguer guesses
concerning the existence of identities which I am not only unable to prove but also
unable to state. . . . Needless to say, I strongly recommend my readers to supply the
missing proofs, or, even better, the missing identities.

In this paper, Dyson defines the rank of a partition (largest part minus the number of parts)
and conjectures that this provides a combinatorial accounting for the congruences of Srinivasa
Ramanujan [17]:

p(5n+ 4) ≡ 0 (mod 5), (1.1)
p(7n+ 5) ≡ 0 (mod 7), (1.2)

where p(n) denotes the number of partitions of the integer n. The rank conjectures were proved
a decade later by Oliver Atkin and Peter Swinnerton-Dyer [2].

The rank does not, however, explain the third Ramanujan congruence

p(11n+ 6) ≡ 0 (mod 11). (1.3)

Dyson therefore goes on to conjecture the existence of a partition statistic “similar to, but more
recondite than, the rank of a partition; I shall call this hypothetical coefficient the ‘crank’ of the
partition. . . I believe the ‘crank’ is unique among arithmetical functions in having been named
before it was discovered.” More than four decades later, George Andrews and Frank Garvan
found the requested crank [1]. Ranks and cranks and their generalizations remain an active area
of research to this day.

1.3.2. Identities of Rogers–Ramanujan type. The Rogers–Ramanujan identities are a pair of
q-series—infinite product identities that were discovered by L. J. Rogers in 1894 [18], yet were
ignored by the mathematical community until Ramanujan independently rediscovered them (at
first without a proof) and brought them to the attention of G. H. Hardy. They are as follows:
for |q| < 1,

∞∑
n=0

qn
2

(1− q)(1− q2) · · · (1− qn)
=

∏
j≥1

j≡±1 (mod 5)

1

1− qj (1.4)
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and
∞∑
n=0

qn(n+1)

(1− q)(1− q2) · · · (1− qn)
=

∏
j≥1

j≡±2 (mod 5)

1

1− qj . (1.5)

Dyson delighted in identities of the “Rogers–Ramanujan type” and in fact Dyson’s very first
published paper [3] was on three modulus 7 analogs of (1.4) and (1.5) that were also originally
due to Rogers [18].

During the war, while working at Bomber Command, Dyson corresponded with W. N.
Bailey, who was at the time working out a deeper understanding of identities of the Rogers–
Ramanujan type. In the course of the correspondence, Dyson contributed many identities to
Bailey’s two papers on Rogers–Ramanujan type identities. Dyson reported in [13] that his
personal favorite of these identities was

∞∑
n=0

qn(n+1)

∏n
k=1(1 + qk + q2k)∏2n+1

h=1 (1− qh)
=
∞∏
j=1

1− q9j

1− qj . (1.6)

Even after Dyson’s ascendance as one of the world’s leading physicists, he returned from
time to time to some research in the theory of partitions and q-series, such as in [5, 9].

1.3.3. The Dyson conjecture. In the first of a series of papers on the statistical theory of
energy levels of complex systems [10], Dyson introduced what came to be known as the Dyson
conjecture: the constant term in the expansion of the product

∏
1≤i 6=j≤n

(
1− zi

zj

)ai
(1.7)

is the multinomial coefficient
(a1 + a2 + · · ·+ an)!

a1!a2! · · · an!
.

In 1975, George Andrews stated a q-analog of the Dyson conjecture, which was proved ten
years later by Doron Zeilberger and David Bressoud [20]. The Dyson conjecture has inspired
numerous generalizations and extensions by many authors over the years, including the exten-
sion of the conjecture to root systems by Ian Macdonald.

1.3.4. “Missed opportunities” lead to found opportunities. On January 17, 1972, Dyson
delivered the Gibbs Lecture at the annual AMS Meeting, which he entitled “Missed opportu-
nities” [12]. In it, he famously declared that “the marriage between mathematics and physics,
which was so enormously fruitful in past centuries, has recently ended in divorce.” He went on
to recount a tale of how he “missed the opportunity of discovering a deeper connection between
modular forms and Lie algebras, just because the number theorist Dyson and the physicist
Dyson were not speaking to each other.” Happily, and in no small part spurred on by Dyson’s
lecture, it appears that mathematics and physics have reconciled in the ensuing decades and are
once again collaborating harmoniously.
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1.4 Dyson’s boundless curiosity

Dyson described what he regarded as his job in mathematics and physics as follows: “I define
a pure mathematician to be somebody who creates mathematical ideas, and I define an applied
mathematician to be somebody who uses existing mathematical ideas to solve problems. Ac-
cording to this definition, I was always an applied mathematician, whether I was solving prob-
lems in number-theory or in physics.” Dyson was a “fox.” He did not discover new physical
theories, but, with an unfailing instinct for the most interesting open questions, went ahead to
elucidate the mathematical structure of physical theories and solve difficult concrete problems.

It is well known that Dyson also got involved in engineering projects with General Atomic,
such as the design of the TRIGA reactor, the design of small nuclear bombs with an intended
application to the propulsion of spaceships by nuclear explosions (Project Orion), etc. He
was also involved in political initiatives, such as the 1963 Partial Test Ban Treaty, which he
supported in spite of the fact that it rendered Project Orion obsolete. In his later years, he wrote
many very successful books for a general audience, such as Disturbing the Universe, Infinite in
All Directions, The Scientist as Rebel, and Maker of Patterns. Dyson was a remarkably talented
writer, and rumor has it that he never had to write any page twice. In recent years, he wrote
numerous stimulating reviews for the New York Review of Books and corresponded with his
readers.

2 Personal Recollections

2.1 Stephen L. Adler

My first very indirect contact with Freeman probably occurred while I was a graduate student
at Princeton (1961–1964), when I occasionally came with classmates to attend the Tuesday
theoretical seminar at the Institute for Advanced Study (IAS). Oppenheimer and other members
of the IAS physics faculty sat in the front row, and peppered the speaker with questions. My
friends and I sat in the rows behind the first row. Freeman was almost certainly at one or more
of these sessions, but I didn’t speak with him.

My real association with the IAS, and with Freeman, began in the fall of 1965, after I
had done work on consequences of the partially conserved axial-vector current hypothesis,
current algebras, sum rules, and neutrino physics that had attracted much attention in the high
energy physics community. Freeman’s interests at that point were shifting to astrophysics,
Tullio Regge’s interests were basically mathematical, and C. N. (Frank) Yang had left the IAS
to go to Stony Brook, leaving no faculty with interests focusing on current issues in elementary
particle physics. This led to a decision to bring in younger people on a temporary basis. One
consequence was that out of the blue (at least so it seemed to me at the time, but undoubtedly
Freeman, Tullio, and Princeton University faculty were involved) I received a phone call from
Oppenheimer when I was at Harvard, offering me a five-year membership at the IAS at a
generous salary, much more than I was getting as Junior Fellow. Oppenheimer also told me
that a similar offer was being made to Roger Dashen (whom I had met briefly in the spring of
1965) so that neither of us would feel too lonely. Researching in the School of Natural Sciences
(SNS) minutes much later, I learned that this initiative was part of a decision to divide the
School of Mathematics at the IAS into separate Schools of Mathematics and Natural Sciences.
26 IAMP News Bulletin, October 2021



In Memoriam: Freeman Dyson (1923–2020)

This division was completed during the 1965–1966 academic year.
It didn’t take me long to decide to accept the IAS offer. In the spring of 1966 I visited

Murray Gell-Mann’s group at Cal Tech, and got to know Roger Dashen much better before we
both moved to Princeton. When Dashen and I arrived at the IAS for the fall semester of 1966,
we had the job of restarting the high energy physics program. Freeman and Tullio both gave
us remarkably free rein in doing this, a model behavior that I have tried to emulate as younger
faculty (Witten, Wilczek, Seiberg, Maldacena, and Arkani-Hamed) were much later on brought
into the School. Although our status was that of long-term member, Roger and I participated
in SNS meetings in Oppenheimer’s office, along with Freeman and Tullio. After Oppenheimer
died in February 1967, the meetings moved to Tullio Regge’s office.

Instead of restarting the Tuesday theoretical seminar, Roger and I started two seminars,
one on Mondays for local speakers and one on Fridays for out-of-town speakers, alternating
biweekly with the high energy physics group at Princeton University. A long-term project,
which had strong support from Freeman and Tullio, was to separate the physics books from
the mathematics books. These were all shelved together in the library room on the second
floor of Fuld Hall, and were arranged in alphabetical order by author with no subject index.
I undertook to organize this separation, with the acquiescence of Carl Kaysen, the new IAS
director. Armand Borel, the Mathematics professor responsible for the library, grumbled that
I was only a long-term member, but he was as always pragmatic and in the end did not block
this reform from going ahead. I spent weeks after lunch going through the card catalog to make
the separation, and a new librarian was hired to catalog the physics books by subject using the
Library of Congress system. Freeman’s support was vital in making sure that all of this went
through. Much later on, when a younger generation populated the IAS Mathematics faculty,
the mathematics books were also rearranged by subject.

Although Roger and I were in the same office building as Freeman for a few years after
we came, I had only a few physics interactions with Freeman; our interests had diverged sub-
stantially. Freeman’s main impact on me and the high energy physics group was his hands-off
attitude, in letting us run things unimpeded, and his support when interactions with the rest of
the IAS were involved. Freeman was a passionate supporter of Kaysen’s initiative to broaden
the IAS by creating a School of Social Science, which was opposed at that time by some of
the Mathematics and Historical Studies faculty. Additionally, he gave strong support to bring-
ing biology to the IAS, now taking the form of the Systems Biology group within the SNS.
Freeman’s broad-mindedness, his openness to new ventures, has been a very significant legacy
to the IAS. Much later on, when Congress eliminated the university exemption from the ban
on mandatory retirement, Freeman set a good example by retiring at 70 even though he did
not have to. Most of us in Mathematics and Natural Sciences have followed his example, by
retiring at or before 70, and this has allowed both Schools to bring in new, younger faculty,
keeping the IAS vital as it moves forward into the future.

2.2 Krishnaswami Alladi

Freeman Dyson (1923–2020) was a brilliant physicist and mathematician who was influential
not only due to his fundamental research contributions, but also because his views on various
important scientific issues always attracted worldwide attention. He is known the world over as
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an outstanding theoretical physicist, but relatively few know that he began his research career
as an undergraduate by providing a simple and elegant explanation of a remarkable theorem on
partitions discovered by the Indian mathematical genius Srinivasa Ramanujan. Both my late
father Prof. Alladi Ramakrishnan and I had the privilege of having known Dyson, and here I
will provide some personal remembrances. But I begin by giving a brief account of Dyson’s
work relating to Ramanujan’s congruences for the partition function, because this was Dyson’s
first important discovery.

2.2.1. Dyson’s rank for partitions. In the early part of the 20th century, Srinivasa Ramanu-
jan revolutionized the theory of partitions by discovering some spectacular results. One of
his startling discoveries was that p(5n + 4) ≡ 0 (mod 5), p(7n + 5) ≡ 0 (mod 7), and
p(11n + 6) ≡ 0 (mod 11), where p(n) denotes the number of partitions of a positive inte-
ger n. Ramanujan’s mentor G. H. Hardy of Cambridge University was stunned to see these
congruences because partitions represent an additive process, and so no one would expect that
partitions would satisfy such lovely divisibility relations. Ramanujan gave proofs of these con-
gruences, but these proofs were analytic in nature. Since partitions are combinatorial objects,
it was desirable to understand these congruences combinatorially. Such an explanation was
found in 1944 by Freeman Dyson who was an undergraduate mathematics major at Cambridge
University at the time.

Dyson defined the rank of a partition as the largest part minus the number of parts. He
observed that the rank can be used to split the set of partitions of 5n + 4 into five subsets of
equal size, and the set of partitions of 7n + 5 into seven subsets of equal size. Thus the rank
explains Ramanujan’s partition congruences mod 5 and 7.

But then he noted that the rank would not explain the third congruence pertaining to 11. He
went on to conjecture the existence of a partition statistic that he dubbed the crank which would
explain why 11 would divide p(11n+ 6). Dyson published his findings in a charming paper [4]
in 1944 entitled “Some guesses in the theory of partitions” in the Cambridge University un-
dergraduate mathematics journal Eureka. There he humorously remarked that it was probably
the first instance in mathematics when an object (the crank) was named before it was found!
Interestingly, 43 years later, the crank was found by George Andrews and Frank Garvan during
the Ramanujan Centennial Conference at the University of Illinois, Urbana, in the summer of
1987, and thus Dyson’s crank conjecture was solved.

Since then the study of cranks for general partition functions and their relatives has become
an active area of research in number theory.
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L to R: Krishnaswami Alladi, Frank Garvan, George Andrews, and Freeman Dyson, at the
Mathematics Department, University of Florida - March 25, 2013.

2.2.2. Dyson’s other mathematical work. Dyson made several more fundamental contributions
to mathematics. We mention just one here.

One of the fundamental questions in the study of irrational numbers is to estimate how
closely algebraic irrationals can be approximated by rationals. In 1909, the Norwegian mathe-
matician Axel Thue established a deep result for algebraic numbers of degree at least 3, namely
an upper bound on the irrationality measure for such algebraic numbers. From this it followed
that equations like

xk − dyk = N,

where d is a not a kth power and N any integer, have at most a finite number of solutions in
integer values of x and y if the integer k is at least 3. In contrast, such an equation can have
infinitely many solutions in integers x and y if k = 2. Thue’s result on irrationality measures
was significantly improved by Carl Ludwig Siegel in 1921. Dyson further improved on Siegel’s
theorem in 1947, and the final definitive result was established by K. F. Roth in the fifties. Thus
Dyson made a notable contribution to this major mathematical problem when he was still a
student.

2.2.3. Dyson and quantum electrodynamics. In 1947, Dyson moved to the United States to
work under Hans Bethe at Cornell University. There Dyson came into contact with Richard
Feynman who simultaneously and independently of Julian Schwinger and Shinichiro Tomon-
aga had done pioneering work in quantum electro-dynamics. But the method of Feynman
which was diagrammatic was very different from the field-theoretic approach of Schwinger
and Tomonaga. In 1949 Dyson proved [5] that the two approaches were equivalent and this
propelled him to stardom in the world of physics.
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In the 1960s, as a schoolboy, I had heard my father speak highly of Dyson on many oc-
casions. While working for his PhD in probability and stochastic processes at the University
of Manchester, my father met Dyson in 1949 at a conference in Edinburgh where Dyson was
hailed as a rising star. Later in 1957–58, when my father was a Visiting Member at the Institute
for Advanced Study in Princeton, he interacted more closely with Dyson who was by then a
permanent member.

In 1967, my father wrote a paper showing how the Feynman diagrams coalesce in a way
that was simpler than Dyson’s derivation.

2.2.4. Contacting Dyson in 1972. My fledgling research in number theory began in 1972 when
I was just entering the BSc class at Vivekananda College of Madras University. I was only 16
then, and I was fascinated by Fibonacci numbers and arithmetical functions. In order to get an
assessment of my early research, my father sent my work to very eminent mathematicians to
get their opinion and advice. My father also wrote to Dyson because he knew that Dyson had
begun his academic life in number theory as an undergraduate. Dyson wrote back saying that
my work showed that I had promise, but that a talented youngster should take to a more serious
subject like physics, instead of pursuing number theory which he considered “recreational”!

Dyson on many occasions had referred to number theory as recreational, but at the same
time, he had emphasized that his investigations in number theory had given him the greatest
pleasure.

2.2.5. Interacting with Dyson at the Institute for Advanced Study (1981–82). I spent the aca-
demic year 1981–82 as a Visiting Member at the Institute for Advanced Study. My main
interaction was with the Fields Medalists Atle Selberg and Enrico Bombieri in the School of
Mathematics. Dyson was in the School of Natural Sciences, and so I did not see him in the
mathematics seminars. But I did see him at the daily afternoon tea. I conversed with him a few
times and he enquired about the work I was doing in analytic number theory and the progress I
was making.

My wife Mathura and I had a nice apartment—56 Einstein Drive—on the grounds of the
Institute. My daughter Lalitha was just a few months old.

Mathura and I were invited to dinners and parties quite a few times, and we needed a
babysitter for Lalitha on those occasions.

I was told that Dyson’s daughter Rebecca, who was then 14 years old, would be a good
babysitter. So I approached Dyson with this request and he was quite pleased to convey it to
his daughter. Indeed, every time Rebecca would babysit Lalitha, Dyson would personally drop
his daughter at the front door of our apartment and pick her up later. Each time he would say a
warm hello when he dropped her, and a pleasant goodbye when he picked her up.
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2.2.6. The Selected Papers of Freeman Dyson. There was an instance when what Dyson said in
the Preface to his Selected Papers [8] was useful to me during my term as Chair at the University
of Florida. I was at the CIRM outside of Marseille attending a conference in number theory. At
the excellent library of the CIRM, I happened to come across [8]. This book is a collection of all
his papers in mathematics and only a selection of some of his papers in physics. In the Preface
to this book, Dyson says that in mathematics, a theorem proved is a theorem forever, and so
it is customary to publish the collected works of a mathematician. By contrast, in physics,
most papers are speculative, and so only years later would a physicist know which papers are
correct and truly significant. So it is customary to publish only selected papers of a physicist.
Coincidentally, when I was attending that conference at the CIRM, I received a letter from the
Dean saying that the Provost’s Tenure and Promotion Committee wanted some justification
as to why one of my colleagues was being put up for promotion to full professorship when
this person had only 28 research publications instead of the required 30! In my response I
emphasized the quality of work of my colleague; quoting Dyson from his Preface, I added a
comment that the 28 papers by this colleague would amount to more than 50 by a physicist or
a chemist! The promotion was approved without further questioning.

2.2.7. 80th anniversary of the Institute for Advanced Study, 2010. My next meeting with Dyson
was in Princeton in September 2010, when I was invited by Professor Peter Goddard, Director
of the Institute for Advanced Study, for the conference to celebrate the 80th anniversary of
the Institute. Mathura and I were invited to the banquet of the 80th Anniversary Conference.
At the banquet, Freeman Dyson gave a magnificent after-dinner speech about the development
of theoretical physics at the Institute. In giving a fantastic account of the 80 years of the
Institute, Dyson was critical that Robert Oppenheimer, who was the Director from 1947 to
1965, concentrated too much on particle physics. Dyson pointed out that it was at his insistence
that a program on astrophysics was started at the Institute in 1958 with the appointment of Bengt
Stromgren. Dyson also suggested the great astrophysicist Subrahmanyam Chandrasekhar of the
University of Chicago for a permanent appointment at the Institute, but Chandrasekhar was not
interested in the offer.

In retrospect, Dyson said that he felt it was better that Stromgren was appointed as a Per-
manent Member because Chandrasekhar was a “lone wolf” who preferred to work alone and
so may not have blended with the culture of the Institute where Permanent Members spend
considerable time interacting with visitors. Dyson was known to be frank and forthright, and
what he said at the banquet was a confirmation of this.

2.2.8. Visit to Florida in 2013. My last interaction with Dyson was when he visited the Uni-
versity of Florida in March 2013 in response to my invitation to deliver the Ramanujan Collo-
quium. This colloquium series, so generously sponsored by George Andrews, has enabled us
to get world-famous mathematicians as speakers every year. Each speaker would give a public
lecture of wide appeal, namely the Ramanujan Colloquium, followed by two more specialized
seminars during the next two days.
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Dyson making a point during his
Number Theory Seminar talk at
the University of Florida - March
26, 2013.

For the Ramanujan Colloquium, Dyson spoke on the
theme “Playing with partitions” in which he described
how the work of Ramanujan fascinated him, and how he
arrived at the notion of the rank to combinatorially explain
two of Ramanujan’s partition congruences. He spoke with
enormous energy, something you would not expect in
someone who was 90 years of age. After making some
introductory comments about Ramanujan and partitions,
Dyson surprised (or should I say shocked!) everyone by
saying: “I hold Hardy personally responsible for the death
of Ramanujan.” Dyson pointed out that Ramanujan was
away from his family, and that the rigors of life in England
during World War I took a toll on his health. He stressed
that Ramanujan needed a warm and considerate friend,
but Hardy was aloof and did not realize Ramanujan’s
needs. As another example of Hardy’s cold demeanour,
he pointed out that when he discovered the rank as an
explanation of Ramanujan’s congruences, Hardy gave
Dyson the cold shoulder and did not show any interest in
this work.

In the evening following the colloquium, we had a banquet in honor of Dyson. In my
speech at the banquet, I referred to my first contact with Dyson in 1972, and reminded him that
he advised me then to take to physics instead of number theory. He smiled and nodded when I
turned towards him as I said this.

The next day, Dyson addressed the Number Theory Seminar on the theme “New strategies
for prisoner’s dilemma.” His third lecture was a colloquium in the physics department entitled
“Are gravitons in principle detectable?”

He started this thrilling lecture by saying the following in a thunderous voice: “I hate dog-
mas and always question them.” The physics auditorium was overflowing with many students
squatting in the aisles and some standing. Dyson’s visit and lectures made a lasting impression
on all of us.

2.3 Pavel Bleher

January 1992. I am very excited: I am coming to the Institute for Advanced Study (IAS) for
one month, where I will be working with Freeman Dyson on the distribution of eigenvalues in
quantum integrable systems. This will be a continuation of our joint project with Joel Lebowitz
and Zheming Cheng, which we started in Fall 1991. It is midwinter, a very cold late evening,
and we (my wife Tanya and I) are tired after our long overseas trip. We enter our apartment
at the Institute and find a greeting note from Freeman and Imme, a welcome dinner on a table,
and a refrigerator full of food. This was extremely warm and touching.

My first acquaintance with the works of Freeman Dyson was in the earlier seventies, when
I was working with Yakov Sinai on the critical phenomena in the Dyson hierarchical models,
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introduced by Dyson in his proof of the existence of a phase transition in the classical ferro-
magnetic spin chain with the Hamiltonian

H(σ) = −J
∑
i 6=j

σiσj
|i− j|a , σi = ±1,

where 1 < a < 2 and J > 0. The Dyson hierarchical model Hamiltonian is

HD(σ) = −J
∑
i 6=j

σiσj
d(i, j)a

,

where d(i, j) is the hierarchical (2-adic) distance. Since d(i, j) ≥ |i− j|, the interaction in the
Dyson hierarchical model is weaker than in the original model with the power-like interaction,
hence by Griffiths’ inequality the existence of the long range in the Dyson hierarchical model
implies the one in the power-like model. Dyson derives a recurrence inequality for the mag-
netization in the hierarchical model under doubling of the volume, and proves that it remains
greater than a positive constant at low temperatures as the volume goes to infinity. This proves
the existence of the thermodynamic limit magnetization at low temperatures in the classical
spin chain with the power-like interaction.

The Dyson hierarchical model is of great interest for the theory of phase transitions and
critical phenomena, because for this model the renormalization group transformation reduces
to a nonlinear integral transformation, and this allows a study of critical phenomena unavailable
in other models.

In January 1992, Freeman, Joel, Zheming, and I were working on the limiting distribution
of the error function in lattice problems and quantum integrable systems. We began with the
classical circle problem about the asymptotics, as R→∞, of the number of lattice points in a
circle of radius R,

N(R) = #
{

(i, j) ∈ Z2 |
√
i2 + j2 ≤ R

}
.

Heath-Brown proved that the normalized error function

F (R) =
N(R)− πR2

R1/2

has a limiting probability density p(x) in the ergodic sense, so that for every bounded continu-
ous function g(x) on the line,

lim
T→∞

1

T

ˆ T

0

g(F (R))dR =

ˆ ∞
−∞

g(x)p(x)dx.

Heath-Brown proved that the density p(x) is an entire function, and it decays, as x → ±∞,
faster than polynomially. We extended this result of Heath-Brown to the shifted circle problem,
with

N(R;α)

= #
{

(i, j) ∈ Z2 |
√

(i+ α1)2 + (j + α2)2 ≤ R
}
,

α = (α1, α2), 0 ≤ α1, α2 ≤ 1,
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and we proved that the normalized error function

F (R;α) =
N(R;α)− πR2

R1/2

has a limiting probability density p(x;α), which is an entire function. Most importantly, we
obtained estimates of p(x;α) as x→ ±∞. We showed that for all ε > 0,

lim
x→±∞

log p(x;α)

|x|4+ε
= 0,

and

lim
x→±∞

logP±(x;α)

|x|4−ε =∞,

where

P±(x;α) =

∣∣∣∣ˆ ±∞
±x

p(x;α) dx

∣∣∣∣ .
Roughly speaking, p(x;α) decays at infinity as exp(−cx4).

I returned to the IAS the following fall, this time for two semesters (later it was extended to
the third semester). During my stay at the IAS, Freeman and I worked on various projects. One
project was about the variance of the limiting probability density in the shifted circle problem
p(x;α). We showed that ˆ ∞

−∞
xp(x;α)dx = 0,

and we studied the variance
D(α) =

ˆ ∞
−∞

x2p(x;α)dx,

as a function of α. We showed that D(α) is a continuous function, and for every rational
β ∈ Q2, there exists the limit

lim
α→β

D(α)−D(β)

|α− β| | log |α− β|| = C(β) > 0.

Thus, D(α) is a “wild” function, with a sharp local maximum with infinite derivative at every
rational point.

Another project concerned the mean square limit for lattice points in a sphere. Let

N(R) = #{n ∈ Z3 | |n| ≤ r}

be the number of integral points inside a sphere of radius R centered at the origin, and let

F (R) =
N(R)− 4πR3

3

R
.

Then we prove that the following limit exists:

lim
T→∞

1

T log T

ˆ T

1

F 2(R)dR = K,
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where

K =
32ζ(2)

7ζ(3)

and ζ(s) is the Riemann zeta function.
During my stay at the IAS, I often had lunch with Freeman, and we discussed various topics.

He told me about his life in Cambridge and his teachers, Hardy, Besicovitch, Dirac, and others.
In his office at the IAS there were several Russian books, including Dostoevsky and Tolstoy.
Freeman learned Russian in Cambridge, talking to Besicovitch and some other Russians. This
is brilliantly described in his autobiographical book Maker of Patterns.

Once, at lunch, I told Freeman about the problem of spacings between energy levels in
quantum linear systems, the problem I was working on at the time. The problem is as follows (I
use notations from Freeman’s later notes). Let w be a vector of frequencies, whose components
wj , j = 1, . . . , d, are a set of d real numbers linearly independent modulo 1. Let R1 be a
bounded convex region including the origin O in Euclidean space of d dimensions, and let Rz

be the region R1 expanded homothetically by a factor z leaving O fixed. Let Mz be the set of
integer points m = (m1, . . . ,md) in Rz. Let the number of points in Mz be Nz. Consider the
set Qz of linear combinations modulo 1,

(m,w) =
d∑
j=1

mjwj mod 1,

a set of Nz distinct real numbers which we imagine to be arranged in sequence around a circle
of circumference 1. Let Dz be the number of different distances that occur between pairs of
nearest neighbors in Qz. The question I asked Freeman is how does Dz behave as z becomes
large? In the case d = 1, it is easy to prove that Dz is always either 2 or 3. I examined the
case d = 2 numerically for various choices of w and found that Dz varies remarkably little. I
found that Dz is usually about 12 and shows no systematic tendency to increase with z. I was
especially interested in the case when the frequencies wj , j = 1, . . . , d, together with 1, form
a basis in the set of real algebraic integers in an algebraic field. My conjecture was that in this
case Dz is bounded, and the set Qz exhibits some self-similarity properties in z. About four
weeks later Freeman brought a marvelous proof of the following theorem.
Theorem (Dyson). Let wj , j = 1, . . . , d, be real algebraic integers, all belonging to the same
field Φ of degree (d + 1), and are linearly independent over the rationals modulo 1. Then Dz

has a bound independent of z.
Freeman’s proof can be divided into two parts. In the first part, the finiteness of Dz is

proved for any badly approximable vector w, so that for some K > 0,

(m,w) ≥ K

|m|d ∀m 6= 0;

and in the second part, a theorem of Perron is invoked, which shows that under the conditions
of Dyson’s theorem, the vector m is badly approximable.

In May–June 2019 I came to the Institute for Advanced Study for several days for a con-
ference. I was very glad to see Freeman in good health and spirits (he was 95 years old at that
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time). Freeman asked me about my recent work. I told him about my work with Vladimir
Fokin, Karl Liechty, and Thomas Bothner on random matrices and exact solutions of the six-
vertex model of statistical physics. Freeman listened very carefully and asked many questions.
Then he asked if the results were published. I said yes, there were several papers and also my
book with Karl Liechty, Random Matrices and the Six-Vertex Model. Freeman asked if I could
send him the published results. I said yes, and I was very glad to send him a copy of our book
with Karl.

This was my last meeting with Freeman, and I believe I am a lucky man to have known
him, talked to him, and collaborated with him on various projects.

2.4 Jennifer T. Chayes

I first met Freeman in 1980 at a mathematical physics lunch in Princeton’s Jadwin Hall, room
343, during my second year of grad school. The room was filled with legends and future legends
of mathematical physics. None was warmer and more encouraging to me than Freeman. The
lunches were glorious, unstructured brown bags, where someone would, often spontaneously,
go to the blackboard and talk not about a research accomplishment, but about how he (it was
almost always he) was stuck on some problem. During the lunches in 1980–83, the remainder
of my years at Princeton, we would often discuss atomic physics or statistical physics, areas in
which Freeman had made fundamental and beautiful contributions.

The work of Freeman that I studied as a grad student always started with a question in
physics, and then took a journey through some lovely mathematics. Freeman is probably most
famous for his quantum electrodynamics, but it is his statistical physics that captured my heart
and my imagination. One of the problems which Freeman studied was the one-dimensional
1/r2 ferromagnetic Ising model—a simple chain of Ising spins which would have been trivial
if they had nearest-neighbor couplings, but was highly nontrivial due to the long-range in-
teractions, especially the magical power of 2. Many legends had made contributions to this
problem—among the physicists, Thouless, who conjectured a discontinuity in the magneti-
zation (1969), and Anderson, Yuval, and Hamann, who did an early renormalization group
analysis (1971). Among the mathematical physicists who proved some of the physics conjec-
tures were many legends—including Dobrushin and Ruelle, in addition to Freeman, around
1970, and Fröhlich and Spencer about a decade later. Freeman in particular had a spectacularly
clever and beautiful analysis where he introduced what is now known as the “Dyson hierar-
chical model,” for which renormalization properties could be easily established, and used it to
bound the actual model and thereby prove one side of the existence of the phase transition. As
with much of Freeman’s work, he not only established a rigorous result, but also introduced
a new way of thinking about the problem (in this case, a model designed for renormalization)
which physicists and mathematicians use decades later. In 1988, in collaboration with Michael
Aizenman, Lincoln Chayes, and Charles Newman, we proved the discontinuity in the magneti-
zation using many of the ideas going back to Freeman’s original work. Upon seeing me shortly
after this, Freeman said, “I knew you would do something important”—which was probably
the most thrilling compliment I ever received!

Freeman continued to be an inspiration to me on so many levels. During 1994–95 and
1996–97, when I was a member of the Institute for Advanced Study, I would often stop by and
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chat with him as he was having lunch (mostly by himself) or having tea in the Fuld Hall lounge.
He was my model of how to move through the world, always grounded by mathematics, while
venturing bravely into fields over which we have so much less control.

2.5 Jürg Fröhlich

I first heard of Freeman Dyson as an undergraduate student of mathematics and physics at the
ETH in Zurich, during the second half of the sixties. Two of my teachers, Klaus Hepp and
the late Res Jost, who was a close friend of Dyson, followed his scientific work. At that time,
Dyson’s and Lenard’s analysis of Stability of Matter looked particularly exciting to them. Hepp
and Jost greatly admired Dyson as the leading mathematical physicist after World War II, and
they conveyed their admiration to us students. Thus, for me, Dyson was the epitome of a highly
successful theorist whose example one would have to try to follow. In a seminar for undergrad-
uate students, in 1968, we had to give talks about relativistic quantum field theory, and this
was the occasion for us to learn about Dyson’s celebrated work on quantum electrodynamics of
1949 [5]. In passing, I might say that, in retrospect, I find it perplexing that, during that seminar,
we neither heard nor talked about the work of the eminent Swiss theorist E. C. G. Stückelberg, a
professor at the Universities of Geneva and Lausanne, who had invented a manifestly Lorentz-
covariant form of perturbation theory in RQFT already back in 1934 and had introduced the
ideas of a positron representing an electron traveling backwards in time and of diagrams to label
terms in the perturbation series of a quantum field theory, in 1941, several years before Feyn-
man. To return to Dyson, I should add that we also learned that he had contributed important
ideas and results to a development that flourished at the ETH, at the time, namely axiomatic
quantum field theory, in the sense of the late Arthur S. Wightman. As an example, I recall that
there is a remarkable integral representation of commutators of local fields in RQFT, called
Jost–Lehmann–Dyson representation, which has various interesting applications, among them
a general proof of Goldstone’s theorem, which says that, in RQFT, the spontaneous breaking of
a continuous symmetry is accompanied by the appearance of a massless boson in the particle
spectrum of the theory. It should also be mentioned that the outstanding work of Klaus Hepp
on renormalized perturbation theory in RQFT built on ideas originally proposed by Dyson (and
Stückelberg). Thus, there were many intellectual connections between Dyson and people in
the environment in which I grew up as a student. The work of Thomas C. Spencer (IAS) and
myself on the phase transition in the 1/r2 ferromagnetic Ising chain was inspired by some of
his earlier results.

During several stays at the Institute for Advanced Study between 1984 and 2016, my wife
and I developed very friendly ties with Freeman Dyson and his wife Imme. Not only have I
lost a colleague whom I deeply admired, we have lost a friend.

2.6 Joel Lebowitz

The recent deaths of Freeman Dyson and Phil Anderson, whose birthdays were just two days
apart and whose domiciles were less than two miles apart, mark the end of an era in mathemat-
ical/theoretical physics. I describe below a few of my interactions with Freeman over a period
of more than sixty years.
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Freeman’s death came as a sad surprise to me, despite the fact that I knew that he was in poor
health. In fact, just a few days before his death, as we walked together from the physics building
to the dining room of the IAS, I asked Freeman about his health. His answer was “I could talk
about it for hours, but I will not.” The accent on the last four words was emphatic. His voice
had lost almost none of the resonance which thrilled so many varied audiences for so many
years. These audiences included mathematicians, physicists, philosophers, and politicians as
well as college and high school students.

I first met Freeman in the spring of 1953, when I was a first-year graduate student at Syra-
cuse University. I drove with my thesis advisor Peter Bergmann from Syracuse to Ithaca for
a seminar at Cornell by Joe Doob, the probabilist from Illinois, who was also in the car with
us. After the seminar we were invited for drinks at Dyson’s house—Freeman was already a
famous professor there. After drinks we all went to an Italian restaurant and Freeman paid for
my dinner which, given the fact that my graduate assistant salary was not very large (I believe
it was $1,500, per academic year), was much appreciated. I have been the recipient of many
kindnesses from Freeman since then.

My next close encounter with Freeman was during the academic year 1967–1968, when he
was a visiting professor at the Belfer Graduate School of Science, Yeshiva University, where I
was a faculty member. I remember Freeman giving a wonderful course on astrophysics. I have
not been able to find any references to those lectures except for an article by Freeman in the
October 1968 issue of Physics Today, entitled “Interstellar transport.” The article describes two
designs of spaceships powered by nuclear bomb detonations which could enable interstellar
voyages “in about 200 years time.” At the end of the article Freeman writes “This article
is based on a lecture given at the Belfer Graduate School of Science, Yeshiva University, in
January 1968, as an entertainment between semesters.”

My contact with Freeman and his wife Imme increased greatly after my wife Ann and I
moved to Princeton in the late ‘70s, to be closer to Rutgers University where I still work. I
spent part of the 1980 academic year at the IAS as a guest of Freeman. We saw each other quite
often at seminars and also socially. Whenever we met socially, Ann would kiss Freeman on the
cheek, which I think he enjoyed but made him feel a bit uncomfortable. It was not in the style
of his British upbringing. He was, however, far from stuffy. He was a good dinner companion,
having informed and strongly held beliefs, almost never the conventional ones, about almost
any subject. I did not always agree with him but we remained friends.

Let me now come briefly to our direct scientific interactions as mathematical physicists. A
quote from Dyson’s book Eros and Gaia (pp. 164–165) describes his attitude to the subject:

To make clear the real and lasting importance of unfashionable science, I return
to the field in which I am an expert, namely mathematical physics. Mathematical
physics is the discipline of people who try to reach a deep understanding of phys-
ical phenomena by following the rigorous style and method of mathematics. It is
a discipline that lies at the border between physics and mathematics. The purpose
of mathematical physics is not to calculate phenomena quantitatively but to under-
stand them qualitatively. They work with theorems and proofs not with numbers
and computers. Their aim is to qualify with mathematical precision the concepts
upon which physical theories are built.
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My first direct contact with Freeman’s scientific work came in 1968 when I was working
with Elliott Lieb on showing in a “mathematical physics” sense that statistical mechanics can
provide a basis for the equilibrium thermodynamics of real matter consisting of electrons and
nuclei interacting via Coulomb forces. A very crucial ingredient in our analysis was Dyson’s
proof with Andrew Lenard (1967) of the stability against collapse of macroscopic Coulomb
systems. To quote from the paper with Lieb: “The Dyson-Lenard theorem is as fundamental as
it is difficult.”

My next scientific interaction, indeed collaboration, with Freeman, concerned the distri-
bution of lattice points, a problem going back to Gauss. Consider a two-dimensional square
lattice Z2. Take a disc with radius R centered at the origin. Find a bound on the deviation of
N0(R), the number of lattice points in the disc, from its average value of πR2.

The Gauss problem is related to the distribution of energy eigenvalues of a particle in a unit
torus. In the early ‘90s, Pavel Bleher, Zheming Cheng, Freeman Dyson, and I considered the
following more general problem. Take a ∈ [0, 1]2 and define Na(R) as the number of lattice
points in a disc of radius R centered at a, so that the Gauss problem corresponds to a = 0.
So far no randomness. From the point of view of energy level statistics we are interested in
the behavior of Fa(R) = (Na(R) − πR2)/R1/2 as R varies over some range, e.g., R varies
uniformly between 1 and T .

Following ideas by Heath-Brown, we proved the following result. The probability that
Fa(R) lies in the interval (x, x+ dx) approaches A exp[−bx4]dx weakly as T →∞.

Let me conclude with one of my favorite Dyson quotes, from his wonderful book, Infinite
in All Directions [7, p. 118]:

To me the most astonishing fact in the universe . . . . is the power of mind which
drives my fingers as I write these words. Somehow, by natural processes still mys-
terious, a million butterfly brains working together in a human skull have the power
to dream, calculate . . . to translate thoughts and feelings into marks on paper which
other brains can interpret . . . . It appears to me that the tendency of mind to infil-
trate and control matter is a law of nature. . . . Mind has waited for 3 billion years
on this planet before its first string quartet. It may have to wait for another 3 billion
years on this planet before it spreads all over the galaxy. Ultimately, late or soon,
mind will come into its heritage.

I miss Freeman greatly.

2.7 Juan M. Maldacena

Freeman Dyson made crucial contributions to quantum electrodynamics. This is the theory
that describes how electrons interact with light, with both electrons and light treated according
to the laws of relativistic quantum mechanics. Before Dyson entered the scene, Feynman,
Tomonaga, and Schwinger had developed apparently different theories. Feynman’s theory led
to easy recipes for computation, but essentially nobody else understood it. Tomonaga’s and
Schwinger’s theory was more complicated but it seemed to rest on a more solid foundation,
describing the system in the more standard quantum mechanical language. Dyson understood
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how these different approaches were related. He derived how Feynman’s simple rules followed
from the more basic rules of quantum mechanics. Dyson popularized the use of Feynman
diagrams, by explaining how to use them to the researchers visiting the Institute for Advanced
Study. After this outstanding contribution, he was made a permanent professor there.

We should emphasize that these theories had confusing aspects. In particular, corrections to
some quantities seemed infinite. These infinities were removed by correcting the input param-
eters, such as the mass of the electron by infinite amounts. For many physicists and mathemati-
cians this process seemed to be totally unjustified. The physical significance of these apparently
infinite quantities was better understood through the work of Wilson in the ‘70s. Dyson jumped
into a murky problem and developed clear mathematical rules that all students today learn and
apply to describe nature. It is rather paradoxical that this seemingly mathematically ill-defined
theory is actually the most accurate of all of science. In fact, there is a particular property of
the electron which has been both computed and measured with agreement up to 12 significant
digits. Let us say a few words about this quantity. The electron can be pictured as a spinning
charged particle. Since a moving charge generates a magnetic field, this behaves as a small
magnet. The quantity in question is the strength of this magnet. The Dirac equation predicts a
certain value in terms of the charge of the electron and its mass. The theory of quantum elec-
trodynamics corrects it. These corrections come from the fact that, in this theory, the electron is
surrounded by a cloud of “virtual particles” which modify its properties slightly. This has been
calculated and measured with increasing precision since the fifties. When Freeman heard about
the most recent measurements a few years ago, he sent a congratulatory letter to the team that
had done the measurement and said, “I remember that we thought of QED in 1949 as a tem-
porary and jerry-built structure, with mathematical inconsistencies and renormalized infinities
swept under the rug. We did not expect it to last more than 10 years before some more solidly
built theory would replace it. Now, 57 years have gone by and that ramshackle structure still
stands... It is amazing that you can measure her dance to one part per trillion and find her still
following our beat.”

2.8 Hugh Montgomery: A memorable conversation

In the autumn of 1971, I derived an incomplete result concerning the zeta function, and formu-
lated a conjecture describing what I thought lay beyond what I could prove. In that era, in order
to establish that a finding concerning zeta was new, one had to first show it to Selberg, in case it
was already in his desk drawer. So I arranged to pay a brief visit to the Institute in April 1972. I
described my work at the blackboard in Selberg’s office, and he remarked that it was “interest-
ing.” That afternoon at tea I made small talk with Chowla, who noted that Dyson was standing
across the room from us. He asked me if I had met Dyson, and when I said no, he insisted on
dragging me over to be introduced. Dyson listened patiently to Chowla’s presentation, turned
to me, and his first words were, “So what are you thinking about?” I replied, “I think that the
differences between the zeros of the zeta function are distributed with a density one minus the
quantity sine pi u divided by pi u, quantity squared.” Without the slightest hesitation, he calmly
responded, “That’s the pair correlation of the eigenvalues of a random hermitian matrix.” To
say that I was stunned would be an understatement. Hilbert and Pólya had speculated that RH
is true because of the existence of a certain unknown hermitian operator, but there had never
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been any evidence to support that idea. I had suspected that there might be some lesson to be
learned from my conjecture, and was troubled that I didn’t know what it was. Now Dyson was
telling me that the zeros of the zeta function seem to be distributed in the way that one would
expect, if they were eigenvalues. The conversation lasted a few minutes longer, but I have no
recollection of what was said. Perhaps Dyson could tell that the poor graduate student standing
in front of him was struggling to process further information, because when I went to bid my
adieu to Selberg the next morning, he handed me a note from Dyson, in which he specified the
exact pages in Mehta’s book that I should read.

Maybe at the time of this conversation I thought that I was lucky to have had a chance
encounter with a physicist. I soon realized that random matrix theory to which Dyson referred
was constructed in the 1960s by Dyson himself, with just a few others. So it wasn’t a matter of
a physicist but rather that physicist. I have sometimes wondered how long it would have taken
for the connection to be made, if Chowla had not so strenuously insisted that I be introduced
to Dyson. It might have taken decades. Certainly it was fortuitous that the connection was
discovered at the first possible instant.

2.9 Andrew Odlyzko

Freeman Dyson was one of the most remarkable people I have met, even though I was exposed
to only a few facets of his long and astonishingly multifarious and productive life. One of my
great regrets is that I did not get to know him earlier and did not interact with him more.

A much smaller but still substantial regret is that I am able to provide only very limited
details about my most important contacts with Freeman. This is due to the restrictions on
building access caused by the COVID-19 pandemic, which keep me from the personal hard
copy archives that contain my correspondence with him on the main topic that brought us
together in the first place. That subject was the distribution of zeros of the zeta function and its
conjectured connection with random matrix theory.

This connection resulted from a chance conversation between Freeman and Hugh Mont-
gomery. It occurred at the usual afternoon tea at the Institute for Advanced Study in the spring
of 1972. However, I did not become interested in this topic until the late 1970s. At that time
I was working at Bell Labs and occasionally drove down to Princeton for interesting lectures.
One of them was by Montgomery on his work on the pair correlation of the zeros of the zeta
function and its likely link to eigenvalues of random matrices. That lecture aroused my interest
in the computation of precise values of large sets of zeros of the zeta function, and in the devel-
opment of new algorithms for that purpose. It was during this work, in the early 1980s, that I
was introduced to Freeman. He had been pointed out to me on early visits to the Institute, back
in the mid-1970s, but in those days I did not have any incentives to talk to him. That changed,
however, with my dives into the mysteries of the distribution of zeta zeros.

I had extensive correspondence (via regular mail, as he was not using email during that
period) and personal conversations with Freeman on eigenvalues of random matrices and ways
to test the extent to which they behaved like zeta zeros. He suggested and enthusiastically
supported many of the detailed numerical studies that I carried out. He was extremely knowl-
edgeable about random matrices, as was to be expected given his seminal contributions to that
subject. But he also knew a lot about the Riemann zeta function, and in general had great in-
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sight into many mathematical areas. Freeman had promised to write a preface to my planned
book on the conjectures and computations about the zeta function. Unfortunately he passed
away before I could call on him to fulfill that promise.

While Freeman’s main technical contributions were in physics, he started out in number
theory. This contributed to his appreciation of the different goals and approaches taken by
mathematicians and physicists, and the different attitudes towards rigor in proofs. He was a
major figure of 20th century science, and will be greatly missed.

2.10 Craig Tracy and Harold Widom

Freeman Dyson, in the early 1960s, laid the foundation for much of random matrix theory. Mo-
tivated by the work of Wigner, Mehta, and Gaudin, Dyson’s papers had a number of novelties
that continue to this day to influence current research. To quote from Dyson’s Selected Papers:

I replaced Wigner’s ensembles of symmetric matrices by ensembles of unitary ma-
trices. Since unitary matrices form a group, this allowed me to bring the powerful
methods of group theory into the analysis. The other novelty was a proof that the
eigenvalues of the unitary matrices have precisely the same statistical behavior as
the positions of classical point charges distributed with a fixed temperature around
a circular wire. The well-known tools of classical statistical mechanics could there-
fore be applied to the eigenvalues.

A particularly prescient paper is Dyson’s “A Brownian-motion model for the eigenvalues of a
random matrix,” which is a precursor to the Airy2 process that is central to current research in
stochastic growth models. In a 1970 paper, Dyson returned to the orthogonal and symplectic
ensembles to “complete the determination of eigenvalue correlations by finding explicit formu-
lae for all the Pnβ with β = 1, 4.” [Here Pnβ are the n-level correlation functions.]

Our first correspondence with Dyson dealt with the accuracy of his classical Coulomb fluid
model as applied to the Gaussian ensembles. This resulted in our first publication (together with
Estelle Basor) in the field of random matrices. Subsequently we benefited from correspondence
with Dyson concerning the orthogonal and symplectic ensembles.

2.11 Horng-Tzer Yau: Freeman Dyson and random matrix theory

In the 1980s, when I studied with Elliott Lieb toward my thesis, Freeman Dyson was a towering
figure in every direction I studied. His celebrated work with Lenard on the stability of matter in-
spired the Lieb-Thirring inequality and stimulated many subsequent works on rigorous analysis
of quantum many-body systems. In another work, Dyson established a rigorous upper bound
on the ground state energy of hard-core bosons at low density. This upper bound was given a
matching lower bound by Lieb and Yngvason in 1998. This has led to many rigorous works
concerning Bose gas and in particular the Gross–Pitaevskii equations for the Bose–Einstein
condensates.

To many pure mathematicians, Dyson’s most famous works are perhaps those related to
random matrices. After a teatime conversation with Hugh Montgomery in 1972, Dyson wrote
to Atle Selberg saying that, “the pair correlation function of the zeta function [as computed by
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Montgomery] is identical with that of eigenvalues of a random complex matrix of large order.”
Given this, one might think that Dyson had worked on the subject for an extended period of
time. In fact, most of Dyson’s published works on random matrices occurred between 1962–
63. He published a series of five papers under the title, “Statistical theory of the energy levels
of complex systems” and the closely related article [11]. The main conclusions of these six
papers include calculations of level correlation functions and the groundbreaking classification
(β = 1, 2, 4) of random matrix ensembles by the fundamental physical symmetries of the
underlying quantum systems, i.e., Dyson’s threefold way. In addition, he wrote another article
at the time titled, “A Brownian-motion model for the eigenvalues of a random matrix.” After
1963, Dyson rarely published papers on random matrices.

The random matrix theory community in the 1960s consisted of several nuclear physicists
and mathematical physicists. The subject was founded by Eugene Wigner [19] who, according
to Dyson in The Oxford Handbook of Random Matrix Theory, envisioned that “a random matrix
would be a possible model for the Hamiltonian of a heavy nucleus.” Besides the works of
Wigner and Dyson, major rigorous works on random matrices were done by Gaudin [15] and
Mehta [16]. The works of Wigner, Dyson, Gaudin, and Mehta then laid the foundation of the
mathematical theory of random matrices.

Dyson’s Brownian motion paper is very different from his other papers in this direction.
In this groundbreaking work, Dyson sought to find dynamics which leave the eigenvalue dis-
tribution of a Gaussian random matrix ensemble invariant. I remember that in one dinner
conversation with Dyson several years ago, I asked him how he came up with his Brownian
motion construction. Dyson replied that he made a huge effort to construct a Newtonian me-
chanics that leaves the Coulomb gas distributions (which are the eigenvalue distributions of
random matrices) invariant. After many failures, he realized that it’s impossible to do that with
purely Newtonian mechanics; the only possible way is through a friction which is exactly the
Brownian motion.

While the importance of this paper is now well recognized, its relevance to random matrix
theory was not known to my generation of mathematical physicists (or mathematicians for that
matter) even up to the early 2000s. I first looked into Dyson’s Brownian motion around 2006–
07. At the time, Erdős, Schlein, and I were interested in the universality conjecture of the
eigenvalue statistics of random matrices and had no ideas at all. We were bombarded almost
daily at Harvard by the idea of using dynamics (Ricci flow) in the solution of the Poincaré
conjecture. Coming off working on dynamics of Bose gas and the Gross–Pitaevskii equations,
we were curious if the universality conjecture could be solved by some dynamical idea. From
our training, it was natural to start with a matrix Brownian motion and then look into the
dynamics of the eigenvalues. After a while, we realized that what we had tried was exactly
Dyson’s Brownian motion.

Dyson’s Brownian motion turned out to be the key tool in the resolution of the universality
conjecture on the eigenvalue statistics of random matrices, which many considered to be one of
the most fundamental theorems in random matrix theory. Even more surprisingly, nearly sixty
years after his paper was written, the universality theorem can still only be proved by invoking
Dyson’s Brownian motion at some stage of the proof. Although Dyson never mentioned the
dynamics he constructed in connection with the universality conjecture (in fact, this conjecture
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was formulated several years later by Mehta in his book, Random Matrices), his motivation to
construct dynamics leaving the eigenvalue distributions of Gaussian random matrices invariant
was clear.

While random matrix theory is a great success today, it is interesting to note that at the time
random matrix theory had failed in its original purpose to serve as a model for nuclear physics.
Writing for the foreward of The Oxford Handbook of Random Matrix Theory, Dyson recalled,
“All of our struggles were in vain. 82 levels were too few to give a statistically significant test of
the model. As a contribution to the understanding of nuclear physics, random matrix theory was
a dismal failure. By 1970 we had decided that random matrix theory was a beautiful piece of
pure mathematics having nothing to do with physics. Random matrix theory went temporarily
’to sleep.’” By the mid 1970s, Dyson seemed to leave random matrix theory completely. Ran-
dom matrix theory, however, soon started to take off in many areas of mathematics and physics.
The connection between random matrices and zeta functions discovered by Montgomery and
Dyson led to many subsequent works by Katz, Rudnick, Sarnak, Keating, and Snaith. In a
separate direction, random matrix theory has made major impacts in condensed matter physics
and the connection with quantum chaos conjectures was made by Bohigas–Giannoni–Schmit
in the 1980s. Going into the 1990s and 2000s, many new aspects of random matrix theory were
discovered at an astonishing rate. Random matrix theory, initiated by Wigner, Dyson, Gaudin,
and Mehta, has become a fundamental theory in mathematics and physics.

As we reflect on Dyson’s work today, it’s amazing to me how far he was ahead of his
time. In the 60s, the prevailing tool of quantum many-body systems was perturbation theory.
Dyson showed us that there is a life in the rigorous treatment of quantum many-body systems.
In random matrix theory, Dyson did fundamental work regarding its classification and level
statistics calculations. Above all, Dyson’s work on matrix Brownian motions is one of the
earliest dynamical approaches to stationary problems in mathematics. Many time-dependent
methods in mathematics, e.g., Hamilton’s work on the Ricci flow, only gradually emerged in
the 1970s. Dyson was a pioneer of his time who was always full of new insights and original
ideas.

Dyson once told me that he considered himself an applied mathematician in the sense that
he only uses mathematics, but does not work on “pure mathematics.” He said that it is too
difficult to invent new mathematics and that’s why he only “uses” mathematics. I did not know
how to reply to his statement. I was wondering if what he did was not inventing mathematics,
what else could it be?
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1 Jean Ginibre’s legacy
by MONIQUE COMBESCURE (Lyon)

My collaboration with Jean Ginibre started in 1972, with a work on the “quantum scattering
of three body systems,” and continued until my ‘doctorat d’état’ in 1980. Our offices in Orsay
were contiguous, and it was very easy to exchange ideas and research tracks. An anecdote from
our first joint publication in 1974 made us laugh a lot: the editor asked “indicate the name of
the author to whom proofs should be sent . . . ” and I naively said to Jean “it’s amazing: we just
have to give the theorems and they send us the...demonstrations”! Humor was second nature
to Jean; throughout his collaboration with Giorgio Velo, I could hear bursts of laughter coming
from the adjoining office, and I would have liked to know what good joke had triggered this
hilarity! Running (which he did daily during his lunch break) was one of his passion . . . , which
I also shared, but on my own level. Regularly when one of us had a new idea, we wrote it
on a blackboard in one of our offices, where it would simmer quietly and boost our respective
research. We participated together in international meetings, notably those of the IAMP, but
also in Oberwolfach, and MSRI, which broadened the spectrum of our knowledge, and thanks
to which other collaborations were initiated. Jean was passionate about music, and sang great
masterpieces in choirs almost all his life. After I joined a laboratory in Lyon in 2001, we saw
each other less regularly, but kept in touch by email. I visited him in the spring of 2019. He
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was in good shape; we went for a walk in Gif-sur-Yvette, we talked about many things. He was
rather discreet about his “crab” as he used to say, but inexhaustible about music; but we would
also chat about the political antics of the brilliant Cédric Villani, and the transformation of the
bucolic Yvette valley and the Saclay plateau into a “French silicon valley.”

In this homage to J. Ginibre three scientists present three aspects of his important work. The
study of correlation functions of classical gases and the convergence of the virial expansion
was developed by David Ruelle using Banach space techniques. Using similar methods, J.
Ginibre made an important contribution to the study of quantum gases at low activity in a series
of three papers, considering respectively the Maxwell-Boltzmann, the Bose-Einstein, and the
Fermi-Dirac statistics. In his contribution to this memorandum, D. Ruelle presents the methods
and results of these three papers. Jean Ginibre and Giorgio Velo developed a systematic use
of the Littlewood-Paley decomposition that further became standard in the field of dispersive
inequalities for nonlinear Schrödinger and wave equations. Terence Tao presents the fruitful
methods and main results obtained by Ginibre and Velo, that allowed further insights in this
domain. The pioneering work of Jean Ginibre in 1965 on the so-called “Ginibre ensemble of
random matrices” has become a remarkable source of inspiration and developments of many
scientists after 2004. In a private correspondence of 2005, Ginibre wrote: “As regards to my
original motivation about random matrices, it was pure curiosity and I had no applications in
mind. The problem appears among the open questions in the last section of the last paper
by Dyson and Mehta and I found it both natural and exciting.” In his contribution to this
memorandum, Eugene Kanzieper presents the recent developments which show the fertility of
this work of Jean Ginibre in various domains of science.

2 On Jean Ginibre’s article, ‘Reduced density matrices of quantum gases’
by DAVID RUELLE (Bures-sur-Yvette)

The wonderful article to be discussed below has been somewhat forgotten, but deserves careful
consideration. In this piece of work J. Ginibre [1] studies quantum gases at low activity, both
for the Maxwell-Boltzmann (MB) and the quantum (Bose-Einstein and Fermi-Dirac) statistics.
The study is based on the Feynman-Kac formula (in fact the rigorous Kac [2] version) and
uses the Kirkwood-Salzburg equations (see [3]) for correlation functions in classical statistical
mechanics of a system of m particles. We assume that the particles have pair interactions
satisfying natural conditions to ensure thermodynamic behavior.

For classical systems at low activity one can take an infinite volume limit of the Kirkwood-
Salzburg equations in the form of a Banach space linear equation:

ρ = ζ +Kρ (∗)

for the sequence ρ of correlation functions. In a suitable Banach space, we have ||K|| < 1 for
the norm of the operator K at low activity, and ρ is therefore uniquely determined [4] by (∗).

For quantum systems one has to replace the sequence ρ of classical correlation functions
by a sequence of m-particle reduced density matrices ρm(xm, ym). In the MB case one can
express these reduced density matrices (using Feynman-Kac) as Wiener integrals of functionals
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ρm(ωm) where the curves ωj start at xj and end at yj . The sequence of functionals ρm(ωm)
satisfies equations similar to (∗) and therefore low activity quantum gases with MB statistics
can be treated like classical gases.

For Bose-Einstein or Fermi-Dirac statistics one can express the reduced density matrices as
Wiener integrals over functionals of curves of various length connecting the the positions xm

and the positions ym after permutations (some minus signs corresponding to odd permutations
must be inserted in the Fermi-Dirac case). The combinatorics involved is not really hard but,
if one assumes integrable pair potentials, the low activity convergence of the formulas force
Ginibre to requires positivity of the pair potentials, i.e., repulsive interactions! It appears that
this result cannot be improved by the methods of paper I.

We have summarized above Ginibre’s paper I. Paper II proves a cluster property of the
reduced density matrices (long distance decorrelation).

The restriction to positive potentials for quantum statistics in paper I is of course unsatisfac-
tory. This problem is remedied in paper III where one assumes the existence of a rotationally
symmetric hard core for the pair potential (both for MB and quantum statistics). As a result
it will be possible to remove of the positive potential condition. In the hard core situation one
again introduces an operatorK on functionals ρm(ωm) to study reduced density matrices. With
a change in the definition of the norm of the Banach space on whichK acts in (∗), one achieves
that K is again a bounded operator and the results of I and II for MB statistics are recovered.
For quantum statistics, the hard core condition means that each particle effectively interacts
with only a finite number of other particles. Therefore negative (attractive) values of the pair
potential are allowed for the study of low activity quantum gases and for proving the cluster
property of reduced density matrices.
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3 Strichartz inequalities
by TERENCE TAO (Los Angeles)
A fundamental feature of wave equations is that of dispersion: the different frequency compo-
nents of a wave move in different directions, and as time passes, the amplitude of the waves
decays to zero, even if other features of the wave such as the total energy remain conserved.
Mathematically, one can model wave phenomena by considering solutions to partial differential
equations such as the linear Klein-Gordon equation

− ∂ttu+ ∆u = m2u (3.1)
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(where u : R × R3 → R is a function of time t and space x, ∆ =
∑3

j=1 ∂xjxj is the spa-
tial Laplacian), and m ≥ 0 is a constant, or the linear Schrödinger equation, which we will
normalize here as

i∂tu+
1

2
∆u = 0 (3.2)

where the unknown field u : R × R3 → C is now complex-valued. One can also consider
nonlinear variants of these equations, such as the nonlinear Klein-Gordon equation

− ∂ttu+ ∆u = m2u+ λ|u|p−1u (3.3)

and the nonlinear Schrödinger equation

i∂tu+
1

2
∆u = λ|u|p−1u (3.4)

where λ = ±1 and p > 1 are specified parameters; however, for short times or small data one
can hope that perturbative methods can allow one to understand these nonlinear equations once
one obtains a sufficient understanding of their linearized counterparts, including their dispersive
behavior. There are countless other further variations (both linear and nonlinear) of these sorts
of equations, collectively referred to as dispersive equations, but for this discussion we shall
restrict attention to these four. To avoid technicalities, we will always assume that solutions are
smooth enough, and have sufficient decay at spatial infinity, that all formal computations can
be justified.

One can formalize the decay phenomenon mentioned at the beginning of this section by dis-
persive inequalities that assert, roughly speaking, that if a solution u to one of these equations is
sufficiently localized in space at an initial time such as t = 0, then it will decay as t→∞ when
measured in suitable function space norms, such as the L∞x (R3) norm. For instance, from the
formula for the fundamental solution to (3.2), one can represent a solution u to (3.2) explicitly
in terms of the initial data u(0) by the formula

u(t, x) =
1

(2πit)3/2

ˆ
R3

e−i|x−y|
2/2tu(0, y) dy

for all t 6= 0 and x ∈ R3, where the quantity (2πit)3/2 is defined using a suitable branch cut.
From the triangle inequality, this immediately gives the dispersive inequality

‖u(t)‖L∞
x (R3) ≤

1

(2π|t|)3/2
‖u(0)‖L1

x(R3), (3.5)

and so if the solution is initially spatially localized in the sense that the L1 norm ‖u(0)‖L1
x(R3) is

finite, then the solution u(t) decays uniformly to zero as t→ ±∞. A similar (but slightly more
complicated) dispersive inequality can also be obtained for solutions to the linear Klein-Gordon
equation (3.1).

On the other hand, from the pointwise mass conservation law

∂t|u|2 =
3∑
j=1

∂xj Im(u∂xju) (3.6)
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for solutions to (3.2), one can easily derive L2 conservation:

‖u(t)‖L2
x(R3) = ‖u(0)‖L2

x(R3). (3.7)

In particular, the L2 norm of the solution will stay constant in time, rather than decay to zero. To
reconcile this fact with the dispersive estimate, we observe that solutions to dispersive equations
such as (3.2) spread out in space as time goes to infinity, allowing the L∞ norm of such a
solution to go to zero even while the L2 norm stays bounded away from zero.

Conservation laws such as (3.7) and dispersive inequalities such as (3.5) can already be
used, in conjunction with standard inequalities such as the Hölder or Minkowski inequalities,
to control solutions to nonlinear equations such as (3.3) or (3.4) and to obtain local and global
existence, decay and scattering results for such equations; see for instance this paper of Lin and
Strauss [1]. However, the arguments were ad hoc in nature, and not always optimal with respect
to dependence on various parameters such as the dimension d, the nonlinearity exponent p, or
the regularity s of the initial data. It was the landmark work of Ginibre and Velo [2], [3] that
found a systematic, efficient and conceptually simple framework in which to exploit conserva-
tion and dispersive inequalities to analyze nonlinear dispersive equations. Their starting point
was the work of Strichartz [4], who had adapted then-recent work [5] on the Fourier restriction
problem to obtain spacetime estimates for solutions to linear dispersive equations, a typical one
of which is

‖u‖L4
tL

4
x(R×R3) ≤ C‖u(0)‖L2

x(R3)

for solutions to (3.2), basically by cleverly interpolating between the two estimates (3.5), (3.7).
Ginibre and Velo realized that the proof method in fact yielded a larger and more flexible family
of mixed spacetime norm estimates such as

‖u‖Lq
tL

r
x(R×R3) ≤ C‖u(0)‖L2

x(R3)

for 1
q

+ 1
r

= 1
2

and 2 ≤ q < ∞; such estimates are now known as generalised Strichartz esti-
mates, or often more succinctly as Strichartz estimates. Furthermore, these Strichartz estimates
were perfectly suited to construct and then estimate solutions to nonlinear dispersive equations
by converting them (via the Duhamel formula) to integral equations that can be solved via the
contraction mapping principle in mixed spacetime norm spaces such as LqtLrx(R × R3). This
basic scheme is now the standard foundation for the modern theory of such equations, although
over time the function spaces and estimates used have become more sophisticated. For instance,
in Ginibre and Velo’s own work [3], it became advantageous to replace Lebesgue and Sobolev
spaces with Besov spaces; this paper presaged the more systematic use of Littlewood-Paley
decompositions that are now standard in the field.
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4 Ginibre’s contribution to random matrix theory
by EUGENE KANZIEPER (Holon)

The paper on “Statistical Ensembles of Complex, Quaternion, and Real Matrices” [1] – Gini-
bre’s only work on random matrix theory – has unique standing in his legacy. Published at the
dawn of Ginibre’s career in 1965 (almost in parallel with a series of three papers [2] related to
his PhD/DSc research [3]), this elegant piece of mathematics remained largely unattended for
almost three decades to become Ginibre’s second most cited work, see Fig. 4.1.

Ginibre’s paper [1] focusses on three ensembles of asymmetric Gaussian random matrices
– nowadays often coined as GinOE, GinUE, and GinSE – that were derived from the celebrated
Gaussian Orthogonal (GOE), Gaussian Unitary (GUE), and Gaussian Symplectic (GSE) ran-
dom matrix ensembles [4] by relaxing a Hermiticity constraint. By Ginibre’s own account [5],
“as regards my original motivation, it was pure curiosity and I had no application in mind. The
problem appears among the open questions in the last section of the last paper by Dyson and
Mehta [6] and I found it both natural and exciting.”

Figure 4.1: Citation record for Ginibre’s paper since 1965. Note a citation spike in 1997.
Retrieved on August 30, 2021.

Three non-Hermitean descendants of GOE, GUE and GSE are defined by the Gaussian
probability measure

dµ(β)(S) = e−trSS†
dµ

(β)
L (S), (4.1)
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where dµ(β)
L (S) represents a family of natural flat measures corresponding to the spaces Tβ on

which the matrices S vary: T1(n), T2(n), and T4(n) are spanned by all n × n matrices with
real (GinOE, β = 1), complex (GinUE, β = 2), and real quaternion (GinSE, β = 4) entries,
respectively. The violated Hermiticity, S† 6= S, brings about the two major phenomena: (i)
complex-valuedness of the random matrix spectrum and (ii) splitting the random matrix eigen-
vectors into a bi-orthogonal set of left and right eigenvectors. Ginibre’s work deals with the
spectral statistics only.

The three matrix models exhibit profound differences in their spectral patterns, see Fig. 4.2.
Random eigenvalues are (i) scattered almost uniformly in GinUE, (ii) depleted from the real
axis in GinSE, and (iii) accumulated along the real axis in GinOE. While these peculiarities
were realized by Ginibre in his work, their quantitative description had not been always com-
plete. For this reason, below we comment on both Ginibre’s results and complementary contri-
butions of other authors. In doing so, we adopt the order [1] of increasing difficulty.

GinUE (Section 1).—The joint probability density function (j.p.d.f.) of n complex eigenvalues
(z1, · · · zn) of a random matrix S ∈ T2(n) with complex valued entries was found to be of the
form [1]

P (2)
n (z1, · · · , zn) =

(
πn

n∏
`=1

`!

)−1 n∏
`1>`2=1

|z`1 − z`2|2
n∏
`=1

e−z`z̄` . (4.2)

It describes a determinantal point process on C with the scalar kernel

K(2)
n (z, z′) =

1

π
e−

1
2
|z|2e−

1
2
|z′|2

n−1∑
`=0

(zz̄′)`

`!
. (4.3)

Consequently, the GinUE p-point correlation function admits a determinantal representation

R(2)
p (z1, · · · , zp;n) = det

(
K(2)
n (zk, z`)

)p
k,`=1

. (4.4)

These results served as the starting point for studying various limiting spectral distributions as
n→∞. In particular, asymptotic analysis of the mean spectral density

R
(2)
1 (z;n) =

Γ(n, |z|2)

πΓ(n)
(4.5)

Figure 4.2: Plots of complex eigenvalues demonstrating different spectral patterns in GinUE
(left panel), GinSE (middle panel), and GinOE (right panel). Numerical simulations [7].
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led Ginibre to advocate emergence of the circular law [8]. Closing Section 1, Ginibre pointed
out that the j.p.d.f. (4.2) can be interpreted as a distribution of the positions of charges of a
two-dimensional Coulomb gas confined by an harmonic oscillator potential U(z) = |z|2/2, at
the inverse temperature 1/T = 2.

GinSE (Section 2).—The spectrum of a random matrix S ∈ T4(n) drawn from GinSE consists
of n pairs of complex conjugated eigenvalues (z1, z̄1, · · · , zn, z̄n). While Ginibre managed to
determine their joint probability density function

P (4)
n (z1, · · · , zn) = ((2π)nn!

∏n
`=1(2`− 1)!)

−1 ∏n
`1>`2=1 |z`1 − z`2|2|z`1 − z̄`2|2

×∏n
`=1 |z` − z̄`|2 exp(−z`z̄`), (4.6)

where the factor
∏n

`=1 |z`− z̄`|2 in (4.6) is directly responsible for the depletion of eigenvalues
along the real axis, he did not report any progress on calculating spectral correlation functions,
plainly noticing that their determination “appears to be considerably more difficult than in the
complex case, and the electrostatic interpretation [...] breaks down.” A year later, this task was
accomplished by Mehta and Srivastava [9], see also Ref. [4], who essentially discovered that
GinSE eigenvalues form a Pfaffian point process on C. A physical analogy of GinSE with a
two-dimensional Coulomb gas appears to be much less transparent; it has been discussed much
later in Ref. [10].

GinOE (Section 3).—Algebraic structures behind random real asymmetric matrices S ∈ T1(n)
appeared to be the most challenging and least studied in Ginibre’s paper. The difficulties faced
in the analysis of the GinOE can be attributed to the fact that its, generically complex, spec-
trum may contain a finite fraction of real eigenvalues; the remaining complex eigenvalues al-
ways form complex conjugated pairs. This very peculiar feature of GinOE – accumulation of
eigenvalues along the real axis – can conveniently be accommodated by dividing the entire
space T1(n) spanned by all real n × n matrices S ∈ T1(n) into (n + 1) mutually exclusive
sectors T1(n/k) associated with the matrices Sk ⊂ S having exactly k real eigenvalues, such
that T1(n) =

⋃n
k=0 T1(n/k). Consequently, the j.p.d.f. of all n eigenvalues of S ∈ T1(n) is

contributed by the partial j.p.d.f.’s:

P (1)
n (w1, · · · , wn) =

n∑
k=0

PS∈T(n/k)(w1, · · · , wn). (4.7)

Notice that half of the sets T1(n/k) are empty: this occurs whenever n and k are of different
parity. Due to significant technical hurdles, Ginibre only succeeded in finding explicit expres-
sion for the simplest partial j.p.d.f. in the sector T1(n/n) where all eigenvalues are real; not
surprisingly, it coincided with the one for the GOE [4].

In entire generality, partial j.p.d.f.’s were determined by Lehmann and Sommers [11] a
quarter of a century after Ginibre’s work, and rediscovered by Edelman [12] a few years later.
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For completeness, we quote their result for the k-th partial j.p.d.f. (0 ≤ k ≤ n):

PS∈T(n/k)(λ1, · · · , λk; z1, · · · , z`) =
2`−n(n+1)/4

i` k! `!
∏n

j=1 Γ(j/2)

k∏
i>j=1

|λi − λj|
k∏
j=1

exp(−λ2
j/2)

×
k∏
j=1

∏̀
i=1

(λj − zi)(λj − z̄i)
∏̀
i>j=1

|zi − zj|2|zi − z̄j|2

×
∏̀
j=1

(zj − z̄j) erfc

(
zj − z̄j
i
√

2

)
exp

(
−z

2
j + z̄2

j

2

)
. (4.8)

Here, the parameterisation (w1, · · · , wn) = (λ1, · · · , λk; z1, z̄1, · · · , z`, z̄`) was used to indicate
that the spectrum is composed of k real and ` pairs of complex conjugated eigenvalues so that
k + 2` = n. The above j.p.d.f. is supported for (λ1, · · · , λk) ∈ Rk, (Re z1, · · · ,Re z`) ∈ R`,
and (Im z1, · · · , Im z`) ∈ (R+)`.

In spite of this tremendous progress summarized in a somewhat complicated Eq. (4.8), it
took another decade and a half to establish that the GinOE eigenvalues form a Pfaffian point
process and explicitly determine [13, 14] the Pfaffian representations of correlation functions
for real-real, complex-complex and real-complex eigenvalues.

�

An outside reader of this brief note may be misled into thinking that, after publications [13,14],
a long and exciting journey started by Ginibre in 1965 has come to an end. Luckily, this is
by no means the case. Born out of mathematical curiosity and lacking immediate physical
applications at the time, Ginibre’s random matrices as well as their by-now-numerous defor-
mations have surfaced, by E. Wigner’s “miracle of the appropriateness”, in various disciplines
and systems – quantum chaology and mathematical statistics, statistical and condensed matter
physics, quantum chromodynamics, complex biological and neural networks, the theory of ran-
dom functions and more. Having come a long way from oblivion to a flourishing research field,
non-Hermitean random matrices continue to challenge ever new generations of mathematical
and theoretical physicists.
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Time’s Arrow

Scientific anniversaries

1921.
Albert Einstein won the Nobel Prize “for his services to theoretical physics, and especially for
his discovery of the law of the photoelectric effect.” (Actually awarded in 2022.)

1971.
Aguilar, Balslev, and Combes introduced the method of complex scaling for resonances.
Martin Gutzwiller published his trace formula
Kenneth Wilson introduced the renormalization group.

2021 Nobel Prize

Giorgio Parisi has won the Nobel Prize in Physics “for the discovery of the interplay of disorder
and fluctuations in physical systems from atomic to planetary scales.” (The prize is shared with
Syukuro Manabe and Klaus Hasselmann for their work modeling the Earth’s climate.)

Recent personal celebrations

Ingrid Daubechies was profiled in the New York Times.

Masamichi Takesaki had an 88th birthday conference.

Lost luminaries

Derek Robinson, 2 September, 2021.

Steven Weinberg, 23 July, 2021.

Readers are encouraged to send items for “Time’s Arrow” to bulletin@iamp.org.
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Treasurer’s Report

IAMP currently operates a Euro account at a bank in Bielefeld (Germany) and a US Dollar ac-
count at a bank in Birmingham (USA). The following table details the assets in these accounts
(as of June 30, 2021).

Account Balance Currency Euro equivalent

Bielefeld Checking 85.367 EUR 85.367
Bielefeld Savings 86.000 EUR 86.000
US Checking 2.215 USD 1.866
US Savings 19.751 USD 16.642

TOTAL Checking: 87.233
TOTAL Savings: 102.642

TOTAL (EUR): 189.875

As of Jun 30, 2006: 112,598
As of Jun 30, 2009: 96,963
As of Jun 30, 2012: 125,545
As of Jun 30, 2015: 130,978
As of Jun 30, 2018: 117,068

The sharp increase in assets in the last funding period stems from the fact that prizes had
not yet been awarded and that a number of conferences had to be postponed or even cancelled
due to the Covid situation (see below).

In the current situation there is no income from interest on our savings accounts, thus funds
have not been shifted from the checkings to the savings account in Bielefeld. Since IAMP is
an association founded under the Swiss Civil Code, we are restricted in the ways of investing
our capital and there is little room for improvement here.

IAMP’s main source of income are our membership dues. We welcome donations and
thank all members who continue to contribute in this way. At the moment, we have about 700
members (ordinary ones, most of whom are in good standing, lifetime and associate members,
as well as members paying a reduced fee as first year members or members with economical
hardship or from developing countries). A number of members experienced difficulties paying
dues via the database this year. The EC is working on a solution.

IAMP gratefully acknowledges generous support from the Daniel Iagolnitzer Foundation
for the Henri Poincaré prize and and from Springer Nature Switzerland AG for the Early Ca-
reer Award. This year, the Henri Poincaré prize was awarded to Rodney J Baxter, Demetrios
Christodoulou, Yoshiko Ogata, and Jan Phillip Solovej. The Early Career Award was awarded
to Amol Aggarwal.
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IAMP also gratefully acknowledges Dietmar Kähler as well as our secretary Michael Loss
for the maintance of the website and the database, and thanks Günther Stolz who has been
managing the US Dollar account for years.

The following table details IAMP’s financial activities 2018-2021:

Activity 2018-2021 (EUR) 2018/19 (USD)
Dues 35712 2268
Interest 22 74
DIF 93000 N/A
Springer/AHP/EMS 25,000 N/A
Total Bank/CC fees -3,444 -8
Internet Hosting -306 N/A
Conference support -29181 -5014
ECA Prize ’15 -4447 N/A
HPP/ICMP18 Support -59716 0

Total Gain/Loss 56640 - 2680

The credit card system, by which members can pay their dues or make donations online on
IAMP’s web-page, currently costs roughly 450 Euros per year and an additional 450 Euros
Agio per year. The last item could be avoided if more members were to wire their dues directly
to our Bielefeld account. IAMP strongly encourages European members to do so since SEPA
transactions within Europe cost as little as within one country.

While IAMP provides no regular funds for our main conference, the ICMP, most of IAMP’s
expenses are conference support. IAMP supports conferences in mathematical physics with
1 − 3 KEuros on a competitive basis; funding requests are evaluated by a three-member com-
mittee and the final decision is made by IAMP’s Executive Committee (EC). Given IAMP’s
comfortable financial situation, the EC had decided in 2018 to slightly reduce its capital by
roughly 3 KEuro per year in order to sponsor more conferences. We plan to continue doing
so, hoping that the Covid situation will continue to unwind and the community continues to
make strong proposals. A list of conferences supported in the last funding period is found in
the subsequent tables. Due to the Covid situation, a number of conferences were shifted or
even cancelled, thus leaving us with a surplus in the years 2020/21. According to the EC’s
meeting in 2021, part of this surplus as well as further funds from our checking accounts shall
be invested in a new databse and website structure.
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Conference [Location] (2018) Amount

Mathematical Challenges in Quantum Mechanics [Rome]: 3,000 EUR

Random Matrices, Integrability and Complex Systems [Yad Hashmona, IS] 1,500 EUR

Summer school (Springer conference) ”Current Topics in Mathematical

Physics” [Fields Institute Toronto, Canada] 3,714 USD

Spectral Theory and Mathematical Physics [Santiago, Chile] 1.500 EUR

EMS-IAMP summer school ”Universality in probability theory

and statistical mechanics” [Rome] 3,000 EUR

Results in Contemporary Mathematical Physics [Santiago, Chile] 1,500 EUR

Quantum Roundabout [Nottingham, UK] 500 EUR

Mathematics of Non-equilibrium Statistical Mechanics [Montreal] 1,500 EUR

Progress and visions in quantum theory in view of gravity [MPI Leipzig] 1,000 EUR

Total conference support: 13,500 EUR

+ 3,714 USD

Related to ICMP 2018 (Montreal) :

DIF Travel Support 6.654 EUR
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Conference [Location] (supported in 2019) Amount

Random Physical Systems [Puerto Natales, Chile] 1,000 EUR

Mathematics of interacting QFT models [York, UK] 1,500 EUR

From Quantum to Classical (Springer conference)
[CIRM, France] 1,000 EUR

Stochastic and Analytic Methods in Mathematical Physics
[Yerevan, Armenia] 1,750 EUR

Operators, Functions, and Systems of Mathematical Physics
[Baku, Azerbaijan] 1,000 EUR

Quantissima in the Serenissima III [Venice] 1,000 EUR

QMath 14 [Aarhus, Denmark] 1,000 EUR

Mathematical Physics at the Crossings [Virginia Tech] 656 EUR
+ 600 USD

Summer school (Springer conference) ”Quantum Random Walks,
Quantum Graphs and their spectra in Mathematics, Computer Science
and Physics” [Como, Italy/Germany] 1,250 EUR

Non-commutative Manifolds and their Symmetries [Scalea, Italy/Germany] 1,000 EUR

The Analysis of Large Quantum Systems [CIRM, France] 1,000 EUR

Spring School in Analysis and Mathematical Physics [Santiago, Chile] 1,000 EUR

Great Lakes Mathematical Physics meeting [Oberlin College, USA] 700 USD

Total 13,156 EUR

+ 1,300 USD

Conference [Location] (supported in 2020) Amount

CIRM SMF Conference 1.000 EUR

Meeting ISC for ICMP 2021 798 EUR

IAMP Zoom Seminar 588 EUR

Total 2.386 EUR

October 2021, Dorothea Bahns (IAMP Treasurer)
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News from the IAMP Executive Committee

New individual members

IAMP welcomes the following new members

1. PROFESSOR STEFANO MANCINI, Università di Camerino, Italy

2. MR. DIAA EL-RAHMAN RAYAN, Central Metallurgical Research & Development In-
stitute (CMRDI), Egypt

3. DR. TLAS TAMER, American University of Beirut, Lebanon

4. DR. FABIO PIZZICHILLO, CEREMADE, Université Paris Dauphine, France

5. DR. YORGO SENIKOGLU, Koc University, Turkey

6. DR. SALMAN LAHBABI, ENSEM, UHII and UM6P, Morocco

7. DR. SHREECHARAN TANGIRALA, ICFAI Foundation for Higher Education, Hyderabad,
India

8. DR, RANJANI S SREE, IcfaiTech, Faculty of Science and Technology, ICFAI foundation
for higher education, Hyderabad, India

9. DR. YULIA MESHKOVA, St. Petersburg State University, St. Petersburg, Russia

Recent conference announcements

Quantum Trajectories Fall School

October 18-22, 2021, Toulouse, France.

The 2021 QGraph Network meeting

December 8-9, 2021, Stockholm, Sweden

Workshop on Spin Glasses at Swissmap Research Station

February 27- March 4, 2022, Les Diablerets, Switzerland
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News from the IAMP Executive Committee

Open positions

Postdoctoral position in spectral geometry of graphs and quasicrystals.
The Department of Mathematics, Stockholm University, is looking for a postdoc in mathemat-
ics/mathematical physics to work with Prof. Pavel Kurasov. The subject of the studies will
be crystalline measures, quantum graphs and quasicrystals. This project is based on the recent
discovery that spectra of Laplacians on metric graphs lead to exotic one-dimensional measures
being Fourier quasicrystals. We shall try to understand the connection to sphere packing and
Fourier interpolation.

The position is for two years and is funded from Wallenberg Foundation (Sweden). Please
contact Pavel Kurasov for details at kurasov@math.su.se.

For an updated list of academic job announcements in mathematical physics and related fields
visit

http://www.iamp.org/page.php?page=page_positions

Michael Loss (IAMP Secretary)
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