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Kardar-Parisi-Zhang universality

Kardar-Parisi-Zhang universality

by IvAN CORWIN
(Columbia University, New York, and Institut Henri Poincaré, Paris)

1 Universality in random systems

Universality in complex random systems is a striking concept which has played a central
role in the direction of research within probability, mathematical physics and statisti-
cal mechanics. In this article we will describe how a variety of physical systems and
mathematical models, including randomly growing interfaces, certain stochastic PDEs,
traffic models, paths in random environments, and random matrices all demonstrate the
same universal statistical behaviors in their long-time / large-scale limit. These systems
are said to lie in the Kardar-Parisi-Zhang (KPZ) universality class. Proof of universal-
ity within these classes of systems (except for random matrices) has remained mostly
elusive. Extensive computer simulations, non-rigorous physical arguments / heuristics,
some laboratory experiments and limited mathematically rigorous results provide impor-
tant evidence for this belief.

The last fifteen years have seen a number of breakthroughs in the discovering and
analysis of a handful of special integrable probability systems which, due to enhanced
algebraic structure, admit many exact computations and ultimately asymptotic analysis
revealing the purportedly universal properties of the KPZ class. The structures present
in these systems generally originate in representation theory (e.g. symmetric functions),
quantum integrable systems (e.g. Bethe ansatz), algebraic combinatorics (e.g. RSK cor-
respondence) and the techniques in their asymptotic analysis generally involves Laplaces
method, Fredholm determinants, or Riemann-Hilbert problem asymptotics.

This article will focus on the phenomena associated with the KPZ universality class [3]
and highlight how certain integrable examples expand the scope of and refine the notion
of universality. We start by providing a brief introduction to the Gaussian universality
class and the integrable probabilistic example of random coin flipping and the random
deposition model. A small perturbation to the random deposition model leads us to the
ballistic deposition model and the KPZ universality class. The ballistic deposition model
fails to be integrable, thus to gain an understanding of its long-time behavior and that of
the entire KPZ class, we turn to the corner growth model. The rest of the article focuses
on various sides of this rich model — its role as a random growth process, its relation to
the KPZ stochastic PDE, its interpretation in terms of interacting particle systems, and
its relation to optimization problems involving paths in random environments. Along
the way, we include some other generalizations of this process whose integrability springs
from the same sources. We close the article by reflecting upon some open problems.

A survey of the KPZ universality class and all of the associated phenomena and meth-
ods developed or utilized in its study is far too vast to be provided here. This article
presents only one of many stories and perspectives regarding this rich area of study.
To even provide a representative cross-section of references is beyond this scope. Addi-
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tionally, though we will discuss integrable examples, we will not described the algebraic
structures and methods of asymptotic analysis behind them (despite their obvious impor-
tance and interest). Some recent references which review some these structures include
2, 4, 8] and references therein. On the more physics oriented side, the collection of re-
views and books [1, 3, 5, 6, 7, 8, 9, 10] provides some idea of the scope of the study of
the KPZ universality class and the diverse areas upon which it touches.

We start now by providing an overview of the general notion of universality in the
context of the simplest and historically first example — fair coin flipping and the Gaussian
universality class.

2 Gaussian universality class

Flip a fair coin N times. Each string of outcomes (e.g. head, tail, tail, tail, head) has
equal probability 2=V, Call H the (random) number of heads and let P denote the
probability distribution for this sequence of coin flips. Counting shows that

P =) =2 (7).

n

Since each flip is independent, the expected number of heads is N/2. Bernoulli (1713)
proved that H/N converges to 1/2 as N goes to infinity. This was the first example of a
law of large numbers. Of course, this does not mean that if you flip the coin 1000 times,
you will see exactly 500 heads. Indeed, in N coin flips one expects the number of heads
to vary randomly around the value N/2 in the scale V/N. Moreover, for all z € R,

x
6_y2/2

lim IP(H< §N+§mx) = / Nor:
™

N—oo

dy.

—00

De Moivre (1738), Gauss (1809), Adrain (1809), and Laplace (1812) all participated in
the proof of this result. The limiting distribution is known as the Gaussian (or sometimes
normal or bell curve) distribution.

A proof of this follows from asymptotics of n!, as derived by de Moivre (1721) and
named after Stirling (1729). Write

o0

nl=T(n+1)= /e_tt”dt = n”“/e”f(z)dz
0 0

where f(z) =logz — z and the last equality is from the change of variables ¢t = nz. The
integral is dominated, as n grows, by the maximal value of f(z) on the interval [0, c0).

(z—1)2

This occurs at z = 1, thus expanding f(z) ~ —1 — 2) and plugging this into the

integral yields the final expansion

n! ~ n"e /21 /n.

4 IAMP News Bulletin, April 2016



Kardar-Parisi-Zhang universality

This general route of writing exact formulas for probabilities in terms of integrals
and then performing asymptotics is quite common to the analysis of integrable models in
the KPZ universality class — though those formulas and analyses are considerably more
involved.

The universality of the Gaussian distribution was not broadly demonstrated until work
of Chebyshev, Markov and Lyapunov around 1900. The central limit theorem showed
that the exact nature of coin flipping is immaterial — any sum of independent identically
distributed (iid) random variables with finite mean and variance will demonstrate the
same limiting behavior.

Theorem 0.1 Let X1, X5, ... be 1id random variables of finite mean m and variance v.
Then for all z € R,

N z 2
67y /2
lim P Xi<mN+v\/Nx):/ dy.
N—oo (; \/271' Y

—0o0

Proofs of this result use different tools than the exact analysis of coin flipping and much of
probability theory deals with the study of Gaussian processes which arise through various
generalizations of the CLT. The Gaussian distribution is ubiquitous and, as it is the basis
for much of classical statistics and thermodynamics, it has had immense societal impact.

3 Random versus ballistic deposition

The random deposition model is one of the simplest (and least realistic) models for a ran-
domly growing one-dimensional interface. Unit blocks fall independently and in parallel
from the sky above each site of Z according to exponentially distributed waiting times
(see Figure 1). Recall that a random variable X has exponential distribution of rate
A > 0 (or mean 1/)) if P(X > z) = e~**. Such random variables are characterized by
the memoryless property — conditioned on the event that X > x, X — z still has the
exponential distribution of the same rate. Consequently, the random deposition model is
Markov — its future evolution only depends on the present state (and not on its history).

The random deposition model is quite simple to analyze since each column grows
independently. Let h(t, z) record the height above site x at time ¢ and assume h(0, z) = 0.
Define random waiting times w,; to be the time for the i-th block in column z to fall.
For any n, the event h(t,z) < n is equivalent to ) ., w,,; > t. Since the w,, are iid, the
law of large numbers and central limit theory apply here. Assuming A\ =1,

=1, and lim M

t—o0 t t—00 t1/2

= N(x)

jointly over x € Z, where {N (az)}xez is a collection of iid standard Gaussian random
variables. The top of Figure 2 shows a simulation of the random deposition model. The
linear growth speed and lack of spatial correlation are quite evident. The fluctuation

of this model are said to be in the Gaussian universality class since they grow like ¢!/2,
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Figure 1: (A) and (B) illustrate the random deposition model and (C) and (D) illustrate
the ballistic deposition model. In both cases, blocks fall from above each site with inde-
pendent exponentially distributed waiting times. In the first model, they land at the top
of each column whereas in the second model they stick to the first edge to which they
become incident.

with Gaussian limit law and trivial transversal correlation length scale t°. In general,
fluctuation and transversal correlation exponents, as well as limiting distributions con-
stitutes the description of a universality class and all models which match these limiting
behaviors are said to lie in the same universality class.

While the Gaussian behavior of this model is resilient against changes in the distri-
bution of the w,; (owing to the CLT), generic changes in the nature of the growth rules
shatter the Gaussian behavior. The ballistic deposition (or sticky block) model was in-
troduced by Vold (1959) and, as one expects in real growing interfaces, displays spatial
correlation. As before, blocks fall according to iid exponential waiting times, however,
now a block will stick to the first edge against which it becomes incident. This mechanism
is illustrated in Figure 1. This creates overhangs and we define the height function h(¢, x)
as the maximal height above x which is occupied by a box. How does this microscopic
change manifest itself over time?

It turns out that sticky blocks radically changes the limiting behavior of this growth
process. The bottom of Figure 2 records one simulation of the process. Seppélédinen (1999)
gave a proof that there is still an overall linearly growth rate. Moreover by considering
a lower bound by a width two system, one can see that this velocity exceeds that of the
random deposition model. The exact value of this rate, however, remains unknown.

The simulation in Figure 2 (as well as the longer time results displayed in Figure
3) also shows that the scale of fluctuations of h(t,z) is smaller than in random deposi-
tion, and that the height function remains correlated transversally over a long distance.
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Figure 2: Simulation of random (left) versus ballistic (right) deposition models driven
by the same process of falling blocks. The ballistic model grows much faster, and has a
smoother more spatially correlated top interface.

Figure 3: Simulation of random (left) versus ballistic (right) deposition models driven
by the same process of falling blocks and run for a long time. The red and white colors
represent different epochs of time in the simulation. The size of boxes in both figures are
the same.
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There are exact conjectures for these fluctuations. They are supposed to grow like ¢t!/3
and demonstrate a non-trivial correlation structure in a transversal scale of t*/3. Addi-
tionally, precise predictions exist for the limiting distributions. Up to certain (presently
undetermined) constants c1, ¢z, the sequence of scaled heights cot~1/3 (h(t, 0)— clt) should
converge to the so-called Gaussian orthogonal ensemble (GOE) Tracy-Widom distributed
random variable. The Tracy-Widom distributions can be thought of as modern-day bell
curves, and their names GOE or GUE (for Gaussian unitary ensemble) come from the ran-
dom matrix ensembles in which these distributions were first observed by Tracy-Widom
(1993,1994).

Ballistic deposition does not seem to be an integrable probabilistic system, so where
do these precise conjectures come from? The exact predictions come from the analysis of
a few similar growth processes which just happen to be integrable! Ballistic deposition
shares certain features with these models which are believed to be key for membership in
the KPZ class:

e Locality: Height function change depends only on neighboring heights.
e Smoothing: Large valleys are quickly filled in.

e Non-linear slope dependence: Vertical effective growth rate depends non-linearly
on local slope.

e Space-time independent noise: Growth is drive by noise which quickly decorrelates
in space and time and does not display heavy tails.

It should be made clear that a proof of the KPZ class behavior for the ballistic
deposition model is far beyond what can be done mathematically (though simulations
strongly suggest that the above conjecture is true).

4 Corner growth model

We come to the first example of an integrable probabilistic system in the KPZ universality
class — the corner growth model. The randomly growing interface is modeled by a height
function h(t,z) which is continuous, piece-wise linear, and composed of v/2-length line
increments of slope +1 or —1, changing value at integer x. The height function evolves
according to the Markovian dynamics that each local minimum of A (looking like V) turns
into a local maximum (looking like A) according to an exponentially distributed waiting
time. This happens independently for each minimum. This change in height function
can also be thought of as adding boxes (rotated by 45°). See Figures 4 and 5 for further
illustration of this model.

Wedge initial data means that h(0,x) = |z| while flat initial data (as considered for
ballistic deposition) means that h(0,z) is given by a periodic saw-tooth function which
goes between height 0 and 1. We will focus on wedge initial data. Rost (1980) proved a
law of large numbers for the growing interface when time, space and the height function
are scaled by the same large parameter L.
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Figure 4: Various possible ways that a local minimum can grow into a local maximum.
The red dot represent the local minimum at which growth may occur.

Theorem 0.2 For wedge initial data,

h(Lt, L) =@ ) <t

I
[t L
Figure 6 displays the result of a computer simulation wherein the limiting parabolic

shape is evident. The function b is the unique viscosity solution to the Hamilton-Jacobi
equation 5 . 5
2
Zh(t.2) = S (1= (5-b(ta)?).
This equation actually governs the evolution of the law of large numbers from arbitrary
initial data.

The fluctuations of this model around the law of large numbers are what is believed
to be universal. Figure 6 shows that the interface (blue) fluctuates around its limiting
shape (red) on a fairly small scale, with transversal correlation on a larger scale. For
€ > 0, define the scaled and centered height function

-1

he(t,z) := (e *t, e 'a) — ETt
where the dynamic scaling exponent z = 3/2 and the fluctuation exponent b = 1/2.
These exponents are easily remembered since they correspond with scaling time : space :
fluctuations like 3 : 2 : 1. These are the characteristic exponents for the KPZ universality
class. Johansson (1999) proved that for fixed ¢, as € — 0, the random variable h(t,0)
converges to a GUE Tracy-Widom distributed random variable (see Figure 7). Results
for the related model of the longest increasing subsequence in a random permutation were
provided around the same time by Baik-Deift-Johansson (1999). For that related model,
two years later Prahofer-Spohn (2001) computed the analog to the joint distribution of
he(t,z) for fixed ¢t and varying z.
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Figure 5: The corner growth model starts with an empty corner, as in (A). There is only
one local minimum (the red dot) and after an exponentially distributed waiting time,
this turns into a local maximum by filling in the site above it with a block, as in (B). In
(B) there are now two possible locations for growth (the two red dots). Each one has an
exponentially distributed waiting time. (C) corresponds to the case when the left local
minimum grows before the right one. By the memoryless property of exponential random
variables, once in state (C), we can think of choosing new exponentially distributed
waiting times for the possible growth destinations. Continuing in a similar manner, we

arrive at the evolution in (D) through (H).
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Figure 6: Simulation of the corner growth model. The top shows the model after a
medium amount of time and the bottom shows it after a longer amount of time. The
blue interface is the simulation while the red curve is the limiting parabolic shape. The
blue curve has vertical fluctuations of order t'/3 and decorrelates spatially on distances
of order 3/3.
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Figure 7: The density (left) and log of the density (right) of the GUE Tracy-Widom
distribution. Though the density appears to look like a bell-curve (or Gaussian), this
comparison is misleading. The mean and variance of the distribution are approximately
—1.77 and 0.81. The tails of the density (as shown in terms of the log of the density in
the bottom plot) decay like e~e-le for z < 0 and like e=+*"" for z > 0, for certain
positive constants ¢_ and c,. The Gaussian density decays like e~ in both tails, with
the constant ¢ related to the variance.

The entire scaled growth process hc(-,-) should have a limit as ¢ — 0 which would
necessarily be a fixed point under the 3:2:1 scaling. The existence of this limit (often called
the KPZ fized point) remains conjectural. Still, much is known about the properties this
limit should enjoy. It should be a stochastic process whose evolution depends on the limit
of the initial data under the same scaling. The one-point distribution for general initial
data, the multi-point and multi-time distribution for wedge initial data, and various
aspects of its continuity are all understood. Besides the existence of this limit, what is
missing is a useful characterization of the KPZ fixed point. Since the KPZ fixed point
is believed to be the universal scaling limit of all models in the KPZ universality class
and since corner growth enjoys the same key properties as ballistic deposition, one also is
led to conjecture that ballistic deposition scales to the same fixed point and hence enjoys
the same scalings and limiting distributions. The reason why the GOE Tracy-Widom
distribution came up in our earlier discussion is that we were dealing with flat rather
than wedge initial data.

One test of the universality belief is to introduce partial asymmetry into the corner
growth model. Now we change local minimum into local maximum at rate p, and turn
local maximum into local minimum at rate ¢ (all waiting times are independent and
exponentially distributed, and p + ¢ = 1). See 8 for an illustration of this partially
asymmetric corner growth model. Tracy-Widom (2007-2009) showed that so long as
p > ¢, the same law of large numbers and fluctuation limit theorem holds for the partially
asymmetric model, provided that ¢ is replaced by ¢/(p — ¢q). Since p — g represents the
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growth drift, one simply has to speed up to compensate for this drift being smaller.

Clearly for p < ¢ something different must occur than for p > ¢. For p = ¢ the
law of large numbers and fluctuations change nature. The scaling of time : space :
fluctuations becomes 4 : 2 : 1 and the limiting process under these scalings becomes
the stochastic heat equation with additive white-noise. This is the Fdwards- Wilkinson
(EW) universality class which is described by the stochastic heat equation with additive
noise. For p < g the process approaches a stationary distribution where the probability
of having k boxes added to the empty wedge is proportional to (p/q)*.

So, we have observed that for any positive asymmetry the growth model lies in the
KPZ universality class while for zero asymmetry it lies in the EW universality class. It
is natural to wonder whether critically scaling parameters (i.e. p — ¢ — 0) one might
encounter a crossover regime between these two universality classes. Indeed, this is the
case, and the crossover is achieved by the KPZ equation which we now discuss.

5 KPZ equation
The KPZ equation is written as

Oh 0*h

E(t,x} = I/@(t,ﬁ) + %A(ﬁ(t, x)>2+ VDE(t, x)

ox
where £(t,z) is Gaussian space-time white noise, \,v € R, D > 0 and h(t,z) is a
continuous function of time ¢t € R, and space x € R, taking values in R. Due to
the white-noise, one expects = +— h(t,x) to be only as regular in as Brownian motion.
Hence, the non-linearity does not a priori make any sense (the derivative of Brownian
motion has negative Holder regularity). Bertini-Cancrini (1995) provided the physically
relevant notion of solution (called the Hopf-Cole solution) and showed how it arises from
regularizing the noise, solving the (now well-posed) equation and then removing the noise
and subtracting a divergence.

The equation contains the four key features mentioned earlier — the growth is local,
depending on the Laplacian (smoothing), the square of the gradient (non-linear slope
dependent growth), and white-noise (space-time uncorrelated noise). Kardar, Parisi, and
Zhang introduced their eponymous equation and 3 : 2 : 1 scaling prediction in 1986 in
an attempt to understand the scaling behaviors of random interface growth.

How might one see the 3 : 2 : 1 scaling from the KPZ equation? Define h.(t, x)
®h(e *t, e 'x), then h, satisfies the KPZ equation with scaled coefficients €2 %v, ¢2~*7b1

and €*~3+2¢/D. It turns out that two-sided Brownian motion is stationary for the KPZ
equation, hence any non-trivial scaling must respect the Brownian scaling of the initial
data and thus have b = 1/2. Plugging this in, the only way to have no coefficient blow
up to infinity, and not every term shrink to zero (as € — 0) is to choose z = 3/2. This
suggests that the plausibility of the 3 : 2 : 1 scaling. While this heuristic gives the right
scaling, it does not provide for the scaling limit. The limit as ¢ — 0 of the equation
(the inviscid Burgers equation where only the non-linearity survives) certainly does not
govern the limit of the solutions. It remains something of a mystery as to exactly how to

>
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describe this limiting KPZ fixed point. The above heuristic says nothing of the limiting
distribution of the solution to the KPZ equation, and there does not presently exist a
simple way to see what this should be.

It took just under 25 years until Amir-Corwin-Quastel (2010) rigorously proved that
the KPZ equation is in the KPZ universality class. That work also computed an exact
formula for the probability distribution of the solution to the KPZ equation — marking
the first instance of a non-linear stochastic PDE for which this was accomplished. Tracy-
Widom’s work on the partially asymmetric corner growth model, and work of Bertini-
Giacomin (1997) which relates that model to the KPZ equation were the two main inputs
in this development. See [3] for further details regarding this as well as the simultaneous
exact but non-rigorous steepest descent work of Sasamoto-Spohn (2010), and non-rigorous
replica approach work of Calabrese-Le Doussal-Rosso (2010), and Dotsenko (2010).

The proof that the KPZ equation is in the KPZ universality class was part of an
ongoing flurry of activity surrounding the KPZ universality class from a number of direc-
tions such as integrable probability [4], experimental physics [10] and stochastic PDEs.
For instance, Bertini-Cancrini’s Hopf-Cole solution relies upon a trick (the Hopf-Cole
transform) which linearizes the KPZ equation. Hairer (2011), who had been developing
methods to make sense of classically ill-posed stochastic PDEs, focused on the KPZ equa-
tion and developed a direct notion of solution which agreed with the Hopf-Cole one but
did not require use of the Hopf-Cole transform trick. Still, this does not say anything
about the distribution of solutions or their long-time scaling behaviors. Hairer’'s KPZ
work set the stage for his development of regularity structures in 2013 — an approach to
construction solutions of certain types of ill-posed stochastic PDEs — work for which he
was awarded a Fields medal.

6 Interacting particle systems

There is a direct mapping (see Figure 8) between the partially asymmetric corner growth
model and the partially asymmetric simple exclusion process (generally abbreviated ASEP).
Associate to every —1 slope line increment a particle on the site of Z above which the
increment sits, and to every +1 slope line increment associate an empty site. The height
function then maps onto a configuration of particles and holes on Z, with at most one
particle per site. When a minimum of the height function becomes a maxima, it cor-
responds to a particle jumping right by one into an empty site, and likewise when a
maximum becomes a minimum, a particle jumps left by one into an empty site. Wedge
initial data for corner growth corresponds with having all sites to the left of the origin
initially occupied and all to the right empty — this is often called step initial data due to
the step function in terms of particle density. ASEP was introduced in biology literature
in 1968 by MacDonald-Gibbs-Pipkin as a model for RNA’s movement during transcrip-
tion. Soon after it was independently introduced within the probability literature in 1970
by Spitzer.

The earlier quoted results regarding corner growth immediately imply that the number
of particles to cross the origin after a long time ¢ demonstrates KPZ class fluctuation
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Figure 8: Mapping the partially asymmetric corner growth model to the partially asym-
metric simple exclusion process. In (a), the red dot is a local minimum and it grows into
a maximum. In terms of the particle process beneath it, the minimum corresponds to
a particle followed by a hole, and the growth corresponds to said particle jumping into
the hole to its right. In (b), the opposite is shown. The red dot is a local maximum and
shrinks into a minimum. Correspondingly, there is a hole follows by a particle, and the
shrinking results in the particle moving into the hole to its left.
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rate = 1 — ¢&%P

o——10O0—O0——0O0—0O0—0—0——0O

= gap = 4 —

Figure 9: The ¢-TASEP, whereby each particle jumps one to the right after an exponen-
tially distributed waiting time with rate given by 1 — ¢5%P.

behavior. KPZ universality would have that generic changes to this model should not
change the KPZ class fluctuations. Unfortunately, such generic changes destroy the
model’s integrable structure. There are a few integrable generalizations discovered in the
past five years which demonstrate some of the resilience of the KPZ universality class
against perturbations.

TASEP (the totally asymmetric version of ASEP) is a very basic model for traffic on
a one-lane road in which cars (particles) move forward after exponential rate one waiting
times, provided the site is unoccupied. A more realistic model would account for the
fact that cars slow down as they approach the one in front. The model of ¢-TASEP does
just that (Figure 10). Particles jump right according to independent exponential waiting
times of rate 1 — ¢%* where gap is the number of empty spaces to the next particle to
the right. Here ¢ € [0,1) is a different parameter than in the ASEP, though when ¢ goes
to zero, these dynamics become those of TASEP.

Another feature one might include in a more realistic traffic model is the cascade
effect of braking. The ¢g-pushASEP includes this (Figure 10). Particles still jump right
according to ¢-TASEP rules, however now particles may also jump left after exponential
rate L waiting times. When such a jump occurs, it prompts the next particle to the left
to likewise jump left, with a probability given by ¢%*" where gap is the number of empty
spaces between the original particle and its left neighbor. If that jump occurs, it may
likewise prompt the next left particle to jump, and so on. Of course, braking is not the
same as jumping backwards, however if one goes into a moving frame, this left jump is
like a deceleration. It turns out that both of these models are solvable via the methods of
Macdonald processes as well as stochastic quantum integrable systems and thusly it was
been proved that, just as for ASEP, they demonstrate KPZ class fluctuation behavior
(see the review [4]).

7 Paths in a random environment

There is yet another class of probabilistic systems related to the corner growth model.
Consider the totally asymmetric version of this model, started from wedge initial data.
An alternative way to track the evolving height function is to record the time when a
given box is grown. Using the labeling shown in Figure 11, let us call L(z,y) this time,
for x,y positive integers. A box (z,y) may grow, once its parent blocks (x — 1,y) and
(z,y—1) have both grown — though even then it must wait for an independent exponential
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rate = L rate — 1 — g&°P
o0—e—00—0—8—0O0—0—0—0—e—=0
(a)
2 4
o——O0—0—8—0O0—0O0—0—0—8—°0
(b)

Figure 10: The g-pushASEP. As shown in (A), particles jump right according to the ¢-
TASEP rates and left according to independent exponentially distributed waiting times
of rate L. When a left jump occurs, it may trigger a cascade of left jumps. As shown in
(B), the right-most particle has just jumped left by one. The next particle (to its left)
instantaneously also jumps left by one with probability given by ¢ where gap is the
number of empty sites between the two particles before the left jumps occurred (in this
case gap = 4). If that next left jump is realized, the cascade continues to the next-left
particle according to the same rule, otherwise it stops and no other particles jump left in
that instant of time.

waiting time which we denote by w,,. Thus L(x,y) satisfies the recursion
L(z,y) = max (L(z = 1,y), L(z,y — 1)) 4w,y

subject to boundary conditions L(z,0) = 0 and L(0,y) = 0. Iterating yields

L(z,y) = max Z w;

where the maximum is over all up-right and up-left lattice paths between box (1,1) and
(z,y). This model is called last passage percolation with exponential weights. Follow-
ing from the earlier corner growth model results, one readily sees that for any positive
real (z,y), for large ¢, L(|xt], [yt]) demonstrated KPZ class fluctuations. A very com-
pelling, and entirely open problem is to show that this type of behavior persists when
the distribution of the w; ; is no longer exponential. The only other solvable case is that
of geometric weights. A certain limit of the geometric weights leads to maximizing the
number of Poisson points along directed paths. Fixing the total number of points, this
becomes equivalent to finding the longest increasing subsequence of a random permuta-
tion. The KPZ class behavior for this version of last passage percolation was shown by
Baik-Deift-Johansson (1999).

There is another related integrable model which can be thought of as describing the
optimal way to cross a large grid with stop lights are intersections. Consider the first
quadrant of Z? and to every vertex (z,y) assign waiting times to the edges leaving the
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Figure 11: The relation between the corner growth model and last passage percolation
with exponential weights. The w; ; are the waiting times between when a box can grow
and when it does grow. L(z,y) is the time when box (z,y) grows.

vertex rightwards and upwards. With probability 1/2 the rightward edge has waiting time
zero, while the upward edge has waiting time given by an exponential rate 1 random
variables; otherwise reverse the situation. The edge waiting time represents the time
needed to cross an intersection in the given direction (the walking time between lights
has been subtracted). The minimal passage time from (1,1) to (z,y) is given by

P(z,y) = min Z We

where 7 goes right or up in each step and ends on the vertical line above (x,y) and w, is
the waiting time for edge e € m. From the origin there will always be a path of zero waiting
time, whose spatial distribution is that of the graph of a simple symmetric random walk.
Just following this path one can get very close to the diagonal x = y without waiting.
On the other hand, for x # y, getting to (La:tj, LytJ) for large ¢ requires some amount of
waiting. Barraquand-Corwin (2015) demonstrated that as long as z # y, P(|t], [yt])
demonstrates KPZ class fluctuations. This should be true when 7 is restricted to hit
exactly (z,y), though that result has not yet been proved. Achieving this optimal passage
time requires some level of omnipotence as you must be able to look forward before
choosing your route. As such, it could be considered as a benchmark against which to
test various routing algorithms.

In addition to maximizing or minimizing path problems, the KPZ universality class
describes fluctuations of ‘positive temperature’ version of these models in energetic or
probabilistic favoritism is assigned to paths based on the sum of space-time random
weights along its graph. One such system is called directed polymers in random environ-
ment and is the detropicalization of LPP where in the definition of L(z,y) one replaces
the operations of (max,+) by (4, x). Then the resulting (random) quantity is called
the partition function for the model and its logarithm (the free energy) is conjectured for

18 IAMP News Bulletin, April 2016



Kardar-Parisi-Zhang universality

Figure 12: The random walk in a space time random environment. For each pair of
up-left and up-right pointing edges leaving a vertex (y, s), the width of the red edges is
given by u, s and 1 — u, ; where u, ; are independent uniform random variables on the
interval [0,1]. A walker (the yellow highlighted path) then performs a random walk in
this environment, jumping up-left or up-right from a vertex with probability equal to the
width of the red edges.

very general distributions on w;; to show KPZ class fluctuations. There is one known
integrable example of weights for which this has been proved — the inverse-gamma distri-
bution, introduced by Seppéldinen (2009) and proved in the work by Corwin-O’Connell-
Seppélédinen-Zygouras (2011) and Borodin-Corwin-Remenik (2012).

The stop light system discussed above also has a positive temperature lifting of which
we will describe a special case (see Figure 12 for an illustration). For each space-time
vertex (y,s) choose a random variable u, s distributed uniformly on the interval [0, 1].
Consider a random walk X (¢) which starts at (0,0). If the random walk is in position
y at time s, then it jumps to position y — 1 at time s + 1 with probability w, s and
to position y + 1 with probability 1 — u, ;. With respect to the same environment of
u’s, consider N such random walks. The fact that the environment is fixed causes them
to follow certain high probability channels. This type of system is called a random
walk in a space-time random environment and the behavior of a single random walker
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is quite well understood. Let us, instead, consider the maximum of N walkers in the
same environment M (¢, N) = max¥, X (¢). For a given environment, it is expected
that M (¢, N) will localize near a given random environment dependent value. However,
as the random environment varies, this localization value does as well in such a way that
for r € (0,1), and large ¢, M(t,e™) displays KPZ class fluctuations.

8 Big problems

It took almost 200 years from the discovery of the Gaussian distributions to the first proof
of its universality (the central limit theorem). So far, KPZ universality has withstood
proof for almost three decades and shows no signs of yielding.

Besides universality, there remain a number of other big problems for which little to
no progress has been made. All of the systems and results discussed herein have been 141
dimensional, meaning that there is one time dimension and one space dimension. In the
context of random growth, it makes perfect sense (and is quite important) to study surface
growth 1 4+ 2 dimensional. In the isotropic case (where the underly growth mechanism
is roughly symmetric with respect to the two spatial dimensions) there are effectively no
mathematical results though numerical simulations suggest that the 1/3 exponent in the
t1/3 scaling for corner growth should be replaced by an exponent of roughly .24. In the
anisotropic case there have been a few integrable examples discovered which suggest very
different (logarithmic scale) fluctuations such as observed by Borodin-Ferrari (2008).

Finally, despite the tremendous success in employing methods of integrable probabil-
ity to expand and refine the KPZ universality class, there seems to still be quite a lot
of room to grow and new integrable structures to employ. Within the physics literature,
there are a number of exciting new directions in which the KPZ class has been pushed,
including: out-of-equilibrium transform and energy transport with multiple conservation
laws, front propagation equations, quantum localization with directed paths, and bio-
statistics. Equally important is to understand what type of perturbations break out of
the KPZ class.

Given all of the rich mathematical predictions, one might hope that experiments have
revealed the KPZ class behavior in nature. This is quite a challenge since determining
scaling exponents and limiting fluctuations require immense numbers of repetition to
experiments. However, there have been a few startling experimental confirmations of
these behaviors in the context of liquid crystal growth, bacterial colony growth, coffee
stains, and fire propagation (see [10] and references therein). Truly, the study of the KPZ
universality class demonstrates the unity of mathematics and physics at its best.
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Robert Schrader
(1939-2015)

After a long, courageous fight against cancer, on November 29, 2015, Robert Schrader
passed away.

Robert Schrader was born on September 12, 1939, in Berlin. In the aftermath of
World War II his family moved to Norway, where Robert attended the primary school
in Stavern and in Oslo. The life in Norway and the Scandinavian culture had a large,
lasting impact on Robert. Robert’s family returned to Germany in 1950, Robert entered
the Altes Realgymnasium in Darmstadt, and afterwards he attended the Herderschule in
Rendsburg, where he finished in 1959 with the Abitur.

He started his studies in physics in the summer of 1959 at the University of Kiel. There
he passed the Vordiplom exam. Having studied one year at the University of Ziirich, he
went to Hamburg in 1962. Robert’s thesis for the diploma degree, “Die Charaktere der
inhomogenen Lorentzgruppe” [JS68], was supervised by H. Lehmann and H. Joos. He
passed the exam for the diploma at the end of 1964. In the summer of 1965 he contin-
ued his studies at the Seminar fiir Theoretische Physik an der Eidgenossischen Technis-
chen Hochschule, Ziirich, and was appointed as assistant there from November 1967 on.
Robert’s advisor for his Ph. D. thesis, “On the Existence of a Local Hamiltonian in the
Galilean Invariant Lee Model”, was K. Hepp with R. Jost as co-advisor. He passed his
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doctoral exam in 1968, and the thesis was published in [S68]. He was awarded the “Ha-
bilitation” in theoretical physics by the University of Hamburg in 1971 with the paper
“Das Yukawa Modell in zwei Raum-Zeit-Dimensionen” [S72].

In 1969 Robert accepted an invitation of Arthur Jaffe to take a post-doc position
as a research fellow at Harvard, and for a part of the time in the US he also worked
at Princeton. A little while later Konrad Osterwalder came to Harvard as the second
post-doc of Jaffe. At the suggestion of Jaffe, both Osterwalder and Schrader began to
study the reconstruction theorem of Nelson, based on Symanzik’s euclidean formulation of
quantum field theory (QFT). They investigated the question of when a set of Schwinger
functions, i.e. euclidean n—point functions of a field theory, determine the Wightman
functions of the corresponding relativistic theory. The upshot, published in [OS73, OS75],
was a set of axioms, which contained reflection positivity (RP) — sometimes also called
Osterwalder—Schrader—positivity — as a crucial property.! In these articles they prove the
Osterwalder—Schrader—reconstruction—theorem which states that one can reconstruct the
Wightman functions of a relativistic QFT from the Schwinger functions of a Euclidean
theory satisfying the above mentioned set of axioms. In particular, RP is used for the
construction of the physical Hilbert space together with the positive Hamiltonian of the
theory. It is convenient to describe RP in terms of the fields: Consider a scalar classical
or random field indexed by d—dimensional euclidean space-time, and define a reflection
operator which maps the time coordinate into its negative. Then this operator acts in a
natural way on functionals of the fields. Now consider an algebra of functionals of the
fields (typically generated by products or exponentials of the fields), and consider the
subalgebras which only involve the fields at positive (negative, resp.) times. Then RP is
the property that every element in the positive (negative, resp.) subalgebra multiplied
with its reflected, complex conjugated counterpart has a positive expectation value. As
a consequence, this defines an inner product on the positive and negative subalgebras,
which then is the starting point of the construction of a Hilbert space.

It was soon realized by Glimm, Jaffe, and Spencer that by repeatedly using the
Schwarz inequality which is implied by RP together with multireflections, one can es-
tablish estimates which lead to the proof of existence of phase transitions in certain
quantum field theories. In the sequel the same idea was used by a large group of authors
including Dyson, Frohlich, Israel, Lieb, Simon, Spencer, among others, in the context of
statistical mechanics. They turned RP in combination with the Peierls argument and
infrared bounds into one of the fundamental tools for the treatment of phase transitions
for models in statistical mechanics. In addition, reflection positivity was crucial in the
study by K. Osterwalder and E. Seiler of the Wilson action for lattice gauge theory.
Nowadays there is still very active research in structures exhibiting RP going on: For
example, recently, Jaffe has studied RP in models with Majorana spins, and in mod-
els with topological order. A few weeks before he passed away, Robert published the
manuscript [S15b], in which he proved RP for a model of simplicial gravity with a Hilbert
action. So over the last forty years reflection positivity has gained importance as a fun-
damental concept in many scientific domains, also far removed from the one in which

LA search with GOOGLE SCHOLAR shows that there are more than 900 citations of [0S73].
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Osterwalder and Schrader discovered it.

In 1973 Robert accepted the offer of a professorship at the Department of Physics
at the Freie Universitat Berlin (FU), and he stayed in this position until his retirement
in 2005. In Berlin he set up the very ambitious program of a constructive approach to
a ¢l—theory in four (Euclidean) space-time dimensions. To this end, he gave a non-
perturbative formulation of multiplicative renormalization within constructive QFT. The
idea was to consider the three renormalization constants for the theory (mass counterterm,
amplitude and vertex function renormalization) as functions of three parameters which
are fixed as normalization constants (two involving the two point function, one involving
the four point function), and to solve for the resulting equation as an implicit function
problem. The cutoff theory is formulated on a periodic lattice, and in order to control
the mapping from the normalization to the renormalization constants, Robert made use
of various correlation inequalities, several of them being his own discoveries. However,
in light of the results of Aizenman, Frohlich and others on ¢} at the beginning of the
eighties, Robert’s program remained uncompleted.

Another important thread of work of Robert, which began in the mid seventies, was
in connection with Kato’s inequality and the minimal coupling prescription of an exter-
nal electromagnetic — or more generally Yang—Mills — field. The basic observation was
that the Laplacian with minimal coupling can be controlled by the free Laplacian (i.e.,
without external field). On an informal level this becomes apparent if one considers the
Feynman—Kac representation of its semigroup, in which the corresponding parallel trans-
port operator enters as a unitary factor. Together with various authors Robert worked
this out in a number of directions: a general, abstract version of Kato’s inequality which
implies the domination of a positive semigroup over another semigroup [HSU77] as con-
jectured by Simon, the application of this version of Kato’s inequality to the semigroups
generated by various Laplacians on Riemannian manifolds [HSU80], quantum scatter-
ing theory, construction of a P(¢)s—theory in an external Yang—Mills field, semiclassical
limits, inequalities for determinants, among others. The works [ST84] and [ST89] with
Michael Taylor on Yang—Mills fields in the same line combine differential geometry with
microlocal analysis, representation theory and ergodic dynamics to semiclassically esti-
mate the partition function, Chern forms and eigenstates.

At the beginning of the eighties Robert began to work on Regge calculus and lattice
gravitation. During a stay at the IHES in 1980 he met Werner Miiller who was working
on the simplicial approximation of spectral invariants of Riemannian manifolds. They
started a close collaboration which was then joined by Jeff Cheeger. After Robert and
Werner Miiller had returned to Berlin, they were separated by the Berlin Wall, since
Miiller lived and worked in East—Berlin. So Robert often went to the east side “as a
tourist”, sometimes together with Cheeger, and they were closely observed by the Stasi,
the East-German secret service, while working in coffee shops.

Notwithstanding, this collaboration was born under the lucky star of mutual inspira-
tion between quantum physics and differential geometry. In their first joint work [CMS84]
they analyzed the simplicial approximation of general Lipschitz—Killing curvatures, of
which the scalar curvature is simplest. Whereas pointwise convergence for vanishing
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edge lengths turned out to be wrong, they could prove convergence at a definite rate in
the sense of measures, provided the simplices stayed uniformly nondegenerate. In fact,
Regge’s calculus had been used by physicists for many years, taking convergence under
subdivision for granted. The motivation for this work was to set up a Euclidean path-
integral formulation of pure quantum gravity on (regularized) moduli spaces. This idea
was taken up once again by Robert in [S15a] and [S15b]. The second focus of Schrader
and Miiller, this time with Borisov [BMS88], was the relation between a supersymmetric
version of quantum scattering theory and index theorems. On open manifolds the heat
kernel does not necessarily define a trace-class operator, but the difference of the heat
kernel of an asymptotically flat manifold and the heat kernel of the flat plane does. They
calculated the supertrace in terms of topological invariants. In 1992 Bunke showed that
this notion of a relative index coincides with the differential geometric notion of Gromov
and Lawson of a relative index. After Miiller’s move to Bonn in the early nineties they
continued the collaboration on various themes, in particular with Karowski on the in-
variants of 3—manifolds [KMS92], which were constructed by Turaev and Viro in terms
of the 6—7 symbols of quantum groups.

Around the time of the fall of the Berlin Wall, the mathematical physics group at
the FU began to gain more and more recognition inside the German mathematical and
theoretical physics communities. Together with Ferus, Pinkall and Seiler from the math-
ematics institute of TU Berlin and with Briining (since 1995) and Friedrich from the
mathematics institute of the Humboldt Universitat Berlin Schrader initiated and man-
aged the Sonderforschungsbereich 288 — Differentialgeometrie und Quantenphysik, a
major collaborative research center funded by the Deutsche Forschungsgemeinschaft. It
was two times prolonged and survived for three periods from 1992 until 2003. In addition
he initiated with Briining, Enf3; Hirzebruch, Miiller and Seiler a funding program for
scientists from the former Soviet Union financed by the Volkswagenstiftung. Within one
project of this program on classical integrable systems, which was headed by Novikov
and Schrader, several scientists from the Landau Institute in Moscow repeatedly visited

FU.

Another long standing collaboration in which many results and articles have been
produced began in 1993, when Vadim Kostrykin visited Berlin within the framework
of a Berlin—St. Petersburg exchange program. After a number of papers on (random)
Schrodinger operators, ionization, cluster properties and related questions, partly in col-
laboration with others, they began to work on metric graphs as a domain in which one
could try out established ideas in a new, non-trivial setting with important applications
in many branches of science. Heuristically, a metric graph is a collection of finite or
semi-infinite (i.e. isomorphic to the positive halfline) intervals which are connected at a
number of the endpoints of the intervals. The standard metric on the intervals induces
a metric on the resulting graphs. Metric graphs can be considered as idealized models
for the configuration space of systems like quantum wires, nano-tubes, neural networks,
and traffic models, to name just a few. Their work on metric graphs (in a later phase
together with one of us (JP)) shows a large part of Robert’s broad interests and knowl-
edge. There are articles on: Kirchhoff-type rules on metric graphs, scattering theory and
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inverse scattering, applications to quantum wires and to information theory, the theory
of walks on metric graphs with application to the analogue of Selberg’s trace formula,
the theory of (contraction, positivity preserving, Feller, heat) semigroups, an extensive
theory of Laplace operators on metric graphs, the wave equation and in particular on
its finite propagation speed, and the complete classification and construction of Brow-
nian motions on metric graphs. Moreover, Robert had developed a theory of quantum
fields on metrics graphs. Even though the underlying configuration space is locally just
a one-dimensional linear space, interesting new aspects and problems are brought in by
the boundary conditions at the vertices and by the non-trivial global topology of a given
metric graph.

In our opinion — and this has also been stated by many others — it throws a somewhat
peculiar light on the German university system that in spite of his truly outstanding
academic achievements, Robert was never appointed as a full professor. Also we want to
mention that the decision of the Department of Physics at the FU to close mathematical
physics with the retirement of Robert and of Michael Karowski in 2005 was to Robert’s
great disappointment.

Robert had a great passion for science, and in particular he was extremely curious
about any subject in physics or mathematics. His knowledge in these two fields was
impressively broad and deep, even to the point of very technical details. He was usually
very enthusiastic about his projects, always full of new ideas, and worked with a high
degree of energy. Robert was a charismatic teacher, and his lectures were always well-
prepared, clear, and truly inspiring.

But Robert was generally curious about and interested in many other subjects, like
music, history, philosophy, literature, and politics, to name just a few. In his youth
he began to practice various kinds of sport, among them boxing, fencing, skiing and
swimming, and the last two he continued until late in his life. Robert had a fine sense
for fairness, and he had told us that he derived it also from his sport activities, especially
from fencing and boxing.

Robert was a person of integrity, very self-confident, with a high sense of humor,
and he was often quite outspoken (which was not always welcome in some parts of the
German academic community). He had a strong sense of responsibility for the welfare of
all those who were close to him. Robert loved Norway, and almost every summer spent
several weeks in the family’s summer house in the south of Norway. All who knew him
were deeply impressed by Robert’s extraordinary courage and positive attitude, which he
also maintained throughout his long illness.

Robert leaves behind Erika, his companion in life of the last decade, his wife Christa,
their two children, Caroline and Stephan, his three sisters and his brother. For the
scientific community his death is a tremendous loss.

We grieve for Robert Schrader, our mentor, colleague and friend,

Andreas Knauf, Jiirgen Potthoff and Martin Schmidt
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Acknowledgement: We heartily thank all colleagues, friends and family members of
Robert who generously provided a large amount of information for this obituary.

Robert Schrader published over one hundred articles. Inevitably the selection of the ones
mentioned in the obituary partly reflects our personal fields of interest.
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The Boltzmann Medal

(reprinted with permission from http://statphys26.sciencesconf.org/resource /page/id/16)

Boltzmann Ceremony & Presentation: Wednesday, July 20, 2016

The TUPAP C3 Commission is pleased to announce that the Boltzmann Medal for 2016
will be awarded during STATPHYS26 to Daan Frenkel and Yves Pomeau.

Daan Frenkel: for his seminal contributions to the Statistical Mechanics understanding
of the kinetics, self-assembly and phase behaviour of complex macro-molecular, colloidal
and biomolecular systems through highly innovative simulation methodologies.

Short Biography: Throughout his career in Amsterdam, Utrecht and Cambridge, Daan
Frenkel, who started as an experimentalist, has been pushing the concepts and tools
of Statistical Mechanics to their limits, in an effort to develop new methodologies and
algorithms enabling the study of complex systems and phenomena through large-scale
numerical simulations. Arguably the most creative and diverse “simulator” of soft mat-
ter of his generation, Frenkel is best known for a broad range of seminal contributions,
starting with the determination of the complete phase diagrams of simple models of lig-
uid crystals, using advanced Monte Carlo (MC) techniques to calculate free energies, a
leitmotiv throughout much of his work. Later, motivated by the desire to understand
the phase behaviour of colloids, chain molecules and their mixtures, Frenkel developed
an extremely powerful extension of traditional MC sampling, namely Configurational
Bias Monte Carlo. He then turned to the wide open problem of crystal nucleation,
which he tackled by developing powerful new methods to determine nucleation barriers
and to evaluate absolute nucleation rates. In an extension of his seminal crystal nucle-
ation work, Frenkel is presently exploring the kinetics of DNA-mediated self-assembly of
complex multi-component systems, with potential applications to the rational design of
addressable nanostructures. There are many other facets to the work of Daan Frenkel
which cannot be evoked in a brief presentation. His contributions to Statistical Mechan-
ics and smart simulation, through landmark conceptual and methodological advances,
have shed light on challenging problems as diverse as liquid crystals, nucleation kinetics,
self-assembly of complex systems or granular matter.

Yves Pomeau: for his seminal contributions to the Statistical Physics of non-equilibrium
phenomena in general and, in particular, for developing our modern understanding of fluid
mechanics, instabilities, pattern formation and chaos.

Short Biography: Yves Pomeau is an outstanding theorists bridging disciplines from ap-
plied mathematics to statistical physics with a profound impact on the neighboring fields
of turbulence and mechanics. In his early works he analyzed the long-time tails of corre-
lation functions and the divergence of transport coefficients of two-dimensional fluids. He
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developed in this connection the mode-mode coupling approach that proved to be crucial
for the study of dense gases. In 1973 he developed the square lattice model, which is at
the origin of the famous joint work with Frisch and Hasslacher (1986) which became the
basis of the whole field of fluid dynamical simulations by lattice automata and Boltzmann
gas methods. These are widely used today in simulations of complex fluids and in indus-
trial applications. His studies of low-dimensional chaos in the 1970s led him to identify,
with P. Manneville, a universal scenario for the transition to chaos via intermittency. His
studies of instabilities and of turbulence of spatially-extended systems inspired him (with
P. Manneville) to the discovery of phase diffusion (the Pomeau-Manneville equation) and,
with his student S. Zaleski, of the different mechanisms of wave number selection. This
also led him to propose that the transition to turbulence in parallel flows is analogous to
directed percolation. Together with younger collaborators, Pomeau proposed a solution
of thelong-standing problem of the “Saffman-Taylor finger” and to the fundamental veloc-
ity selection problem for crystalline dendrites growing in an undercooled melt (a problem
of central importance to metallurgy). Researching weak turbulence brought him to the
condensation of nonlinear waves, a classical analog of Bose condensation. Analysis of the
nonlinear Schrdinger equation led him in turn to predict vortex nucleation in a supersonic
flow past an obstacle. This was thoroughly tested with the realization of Bose-Einstein
condensation in cold atomic vapors. His interest in the focusing of nonlinear deformations
brought him to elasticity and the elementary singularities of crumpled paper. Analyses
of the parking problem, time reversal symmetry, solitary waves down an inclined plane,
random networks of automata, capillarity, wetting and phase-field description of inter-
faces, vortex statistics in two-dimensional hydrodynamics etc. These are a few examples
of his myriad influential contributions.

The Boltzmann Award was instituted by the Commission on Statistical Physics (C3) of
the TUPAP to honor outstanding achievements in Statistical Physics. It is presented by
the Commission at the STATPHYS meeting. The award consists of a gilded medal (the
Boltzmann Medal) with the inscription of Ludwig Boltzmann.

Previous winners of the Boltzmann Medal are:

1975 K.G. Wilson 1995 S.F. Edwards

1977 R. Kubo 1998 E. Lieb and B. Widom

1980 R.J. Baxter 2001 Berni J. Alder and Kyozi Kawasaki
1983 ML.E. Fisher 2004 E. G. D. Cohen and H. E. Stanley
1986 D. Ruelle and Y. Sinai 2007 Kurt Binder and Giovanni Gallavotti
1989 L.P. Kadanoft 2010 John Cardy and Bernard Derrida

1992 J. Lebowitz and G. Parisi 2013 Giovanni Jona-Lasinio and Harry L. Swinney
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News from the IAMP Executive Committee

New individual members

IAMP welcomes the following new members

1. DR. AMAL TAARABT, Pontifical Catholic University, Santiago, Chile
2. DR. VINCENT BEAUD, Technical University Munich, Germany

3. PROF. HAJIME MORIYA, Shibaura Institute of Technology, Japan

Recent conference announcements

Universality, Scaling Limits and Effective Theories

July 11-15, 2016. EMS-IAMP Summer School in Mathematical Physics. Rome
This conference is partially supported by the TAMP.

Organized by M. Correggi, A. Giuliani, V. Mastropietro, A. Pizzo.
http://smp2016.cond-math.it/

From Spin Chains to Number Theory

August 8-20, 2016. Second ZiF Summer School on Randomness in Physics and Mathe-
matics. Center for Interdisciplanary Research, Bielefeld, Germany.

Organized by G. Akemann, F. Gotze.
http://www2.physik.uni-bielefeld.de/randomness2.html

Random Geometry and Physics
October 17-21, 2016. Second French-Russian conference, Institut Henri Poincaré, Paris.
This conference is partially supported by the TAMP.

Organized by D. Benedetti, B. Eynard, J. Jacobsen, M. Katanaev, S. Nechaev, V.
Pasquier, V. Rivasseau, R. Santachiara.

http://www.rivasseau.com/RGPHomepage.html
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Open positions
Postdoctoral Position in Mathematical Physics at TU Munich

A postdoctoral position in mathematical physics will be available on October 01, 2016
at the Technical University of Munich. The exact starting point (after the above date)
is negotiable. The appointment is for 1 year with the possibility of extension up to two
years. This position is a part of the project Asymptotic Completeness in QFT, funded
by the Emmy-Noether Programme of the DFG.

The successful candidate should have a respectable research record in one or more
of the following topics: quantum field theory (relativistic or non-relativistic), spectral
and scattering theory of Schrodinger operators, operator algebras with applications in
physics. He/she will work on scattering theory of quantum systems including the question
of complete particle interpretation and/or infrared problems.

The application should contain a letter of motivation, CV, list of publications and
contact information of one referee. The applications should be sent to Dr. Wojciech
Dybalski (dybalski@ma.tum.de). Applications are welcome until the position is filled.

Postdoctoral Position in Mathematical Physics at the University of Zurich

Starting from October 1st 2016, a two-year postdoctoral position will be available at the
Institute for Mathematics of the University of Zurich, in the group of Marcello Porta.
The position will be part of the research program Mathematical Aspects of Many-Body
Quantum Systems, funded by the Swiss National Science Foundation. The program will
mostly focus on the transport properties of interacting fermionic systems via rigorous
renormalization group methods, and on the derivation of effective theories for many-
body quantum systems, in suitable scaling regimes. The starting date of the position is
negotiable.

The application should contain a CV with list of publications, and two recommenda-
tion letters. The applications should be sent to the address marcello.porta@math.uzh.ch.
Applications are welcome until the position is filled.

Postdoctoral Position - CPER Photonics4Life - CEMPI (Lille)

A one year (renewable) postdoctoral position in mathematical /theoretical physics is avail-
able at the Université Lille 1, starting September 1 2016. The successful candidate is
expected to hold a PhD in theoretical physics or applied mathematics and have a high
level of expertise in one or several of the following fields: modeling and scientific comput-
ing, probabilistic techniques in (statistical) physics, dynamical systems and chaos, PDE
theory. She/He will collaborate with the research teams of the Labex CEMPI on projects
in one of the following subjects: kicked rotors in cold-atom physics, nonlinear optics, fiber
optics, quantum information theory.

The deadline for application is June 15, 2016.

The net pay (after the deduction of social contributions, including health coverage
and pension contributions, but not income taxes) is approximately 2300 euros/month.
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Application material: letter of motivation, CV and publication list (one single .pdf
file). Two or three letters of recommendation. Contact: Stephan De Bievre (stephan.de-
bievre@Quniv-lille.fr)

PhD positions at IMPRS (Munich, Germany)

The International Max Planck Research School (IMPRS) for Quantum Science and Tech-
nology is opening 8 PhD positions in fall 2016.

The IMPRS, based in Munich, is a joint program of the Max Planck Institute of
Quantum Optics (MPQ), the Ludwig-Maximilian University of Munich (LMU) and the
Technical University of Munich (TUM). It offers an excellent and coherent graduate
program in quantum science, including basic and specialized courses, annual summer
schools. It also includes soft-skills courses, industry contact, and an international and
interdisciplinary environment in strong exchange with partner programs and centers.

We welcome students with interest in atomic physics, quantum optics, solid state
physics, material science, quantum information theory, and quantum many-body systems
to apply. Applicants must have a Master’s degree (or equivalent) before September 2016.
Deadline for application is May 15th, 2016. All PhD positions are funded and there are
no tuition fees.

Detailed information about the program can be found at:

http://www.imprs-quantum.mpg.de.

More job announcements are on the job announcement page of the IAMP
http://www.iamp.org/page.php?page=page_positions
which gets updated whenever new announcements come in.

Benjamin Schlein (IAMP Secretary)
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IvaN CORWIN

Columbia University and
Department of Mathematics

2990 Broadway

New York, NY 10027, USA

ivan.corwin@gmail.com

JURGEN POTTHOFF

Fakultat fiir Mathematik und Informatik
Universitat Mannheim

68131 Mannheim, Germany
potthoff@math.uni-mannheim.de

EvANs HARRELL

School of Mathematics
Georgia Institute of Technology
Atlanta GA 30332-0160, USA

bulletin@iamp.org
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Institut Henri Poincaré
11 Rue Pierre et Marie Curie
75005 Paris, France

BENJAMIN SCHLEIN

Institut fur Mathematik
Universitat Ziirich

Winterthurerstrasse 190
8057 Ziirich, Switzerland

secretary@iamp.org
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