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Renormalizable and asymptotically free tensor field theories

Renormalizable and asymptotically free tensor field theories

by JOSEPH BEN GELOUN
(Albert-Einstein-Institut and ICMPA-UNESCO Chair)

The author received the International Union of Pure and Applied Physics Young Scientist
Prize in Mathematical physics in 2015 for his pioneering work on the renormalization of
tensor field theories and his discovery of their generic asymptotic freedom.

To all the students of the developing world

The main question of these notes conveys sundry facets that,
I must confess, I was not primarily interested in when I ini-
tially decided to dive into the subject called quantum grav-
ity. I always loved mathematics and have always been fas-
cinated by math beyond physical phenomena. Along the
way, however, pressing questions about the physics of the
abstract objects and graphs that I drew, integrals and sums
that I computed, started to take over, simply because they
become natural questions of the framework. Like a curious
creature that always wants to surprise me, the intriguing
interplay between mathematics and physics that I cannot
anymore distinguish in my scientific life, coalesces today,
I guess, in the award of the IUPAP Young Scientist Prize
o in Mathematical physics. I deeply thank the International
Umon of Pure and Applied Physics and its selection committee in mathematical physics
for judging my work worthy of this international prize, which I wish to dedicate to all
the students of the developing world, among whom I was once numbered.

1 Introduction
The research question and its context

Nowadays, one of the most investigated questions in physics, is formulated as: how does
Einstein’s theory of general relativity, which explains the geometry of spacetime and
relates it to its matter content, extend to a sensible microscopic theory in regimes when
the geometry of spacetime must itself fluctuate? The regime in question is that of very
small distances typically of the order of the Planck length, or else that of very high energy,
including the physics of the early universe. There is a wide consensus among physicists
that the laws of physics as we know them will inevitably fail at such a scale, involving
colossal energies compared to those of our experiments today. Consensus refers to no
experimental evidence available at this scale from which we could conclusively confirm this
hypothesis. A putative reason of the breaking of these laws would be that, at extremely
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high energy, our spacetime would no longer be smooth but would acquire new properties,
making it a quantum spacetime. The previous question consequently relates to another:
the physics that we know happens in a smooth spacetime, but what does physics become
in a quantum spacetime? Some progress has been made in the last decades to understand
this small-scale regime [1]-[6], although today no theory provides a complete picture, and,
more to the point, no scenario available today can be experimentally tested.

One of greatest challenges of working on a quantum spacetime is to describe physical
phenomena at the Planck length scale without experimental guidance. The Planck length
is about 107° meters and, naturally, it might be difficult to apprehend how small that
is. The electroweak length (107! meters) is the smallest size detected today by particle
colliders. This is where our cutting-edge technology stops. But comparing an object that
is 107!® meters to an object of the Planck length is like comparing the earth to an atom!
What is remarkable is that theoretical and mathematical physics allow one to investigate
the laws of physics even on that tiny scale.

Our approach and goal

Several motivations make us adopt the point of view that our spacetime could be actually
built from discrete geometrical structures. These discrete structures are like building
blocks of Planck length scale, which are glued to form the “fabric” of our spacetime. We
have a proposal for: what is a quantum spacetime? Precisely, our goal is to define a
theory which models the building blocks of our spacetime and their evolution, together
with a robust mechanism which will allow us to predict the formation of our spacetime
and to justify why it then appears to us in the way that we perceive it.

Overview of tensor field theories

A central question is how to make the foregoing proposal mathematically and physically
consistent, and this entails choosing a framework. The framework must be regular enough
to perform calculations and fertile enough to lead to interesting predictions.

Among the few schemes which turn out to be successful for addressing the reconstruc-
tion of a spacetime and recovering the laws of gravity on it is the so-called framework
of matrix models [7]. A matrix model generates Feynman ribbon graphs mapped to
triangulations (polygonizations more generally) of surfaces. From random discrete trian-
gulations to continuum 2D geometry, one proves generically that matrix models undergo
a phase transition at the limit when the building blocks proliferate while the area of
each block becomes null. The theory of random matrices then became a success story
for quantum gravity. Soon after, matrix models were generalized to tensor models [8] in
view of extending the previous success to any D > 2. However, as topology and geometry
in higher dimensions remain difficult subjects, tensor models faced dramatic issues. We
emphasize that the main tool for addressing analytically the partition function of matrix
models named 't Hooft 1/N expansion [9] was crucially missing for tensor models. The
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partition function of a rank D tensor model generates simplicial manifolds in dimension
D which could not be sorted out at that time. In last resort, only numerical results
have been achieved in ranks higher than 2. Ambjgrn et al. inferred from their numerics
that the type of geometry obtained at the continuum was very singular and related to
branched polymer geometries. Hence, because of their intractable behavior and their
singular continuum limit, tensor models were quite abandoned or deeply reformulated.

An enriched version of tensor models has been stated by Boulatov in [10]. Tensors
become tensor fields over several copies of an abstract Lie group as a more convenient
scheme to address a lattice gauge theory version of 3D Euclidean gravity. Depending on
the dimension, the tensor-field interactions describe vertices which provide fusion rules
and exchanges of momenta as in ordinary quantum field theory (QFT). Thus was born a
new line of investigation for quantum gravity and geometry, known as group field theory
(GFT) [11]. While the problem of obtaining an emergent spacetime at some proper
continuum limit was to be understood, the GFT framework appeared very appealing
for performing quantum field theory computations and, naturally, the question of its
renormalizability was systematically addressed. Several power-counting theorems were
formulated without reaching full renormalizability of the most prominent models. One of
the most crucial aspects of Boulatov/GFT is their nonlocal interactions: fields interact
in a region of the background which does not reduce to a point. This feature radically
differs from other types of QFTs and enhances the complexity to identify the correct
generalized locality principle [12] for this class of models. In a different setting, Grosse and
Wulkenhaar (GW) in [13] discovered a nonlocal and renormalizable field theory derived
from noncommutative geometry [3]. The GW model translates to a nontrivial matrix
model and therefore it was clear that a reduced rank 2 tensor model was renormalizable.
Nevertheless, in that time, none of the techniques developed for the GW model had been
exported, whether to tensor models or to GFTs.

In 2009, Gurau introduced a simple but powerful idea [15] which will change the
story of tensor models. In Gurau’s theory, each tensor has a supplementary index called
color with a special rule for gluing the colored simplexes. For the first time, the type
of topology generated at the level of the partition function of tensors was understand-
able. Colored tensor models generate Feynman graphs associated with simplicial pseudo-
manifolds in any dimension [15]. One year later, Gurau revealed an appropriate notion of
1/N-expansion [16] for the very same class of models. It did not take long to analytically
prove that colored tensor models undergo a phase transition [17] and to conclude that
the transition leads to branched polymers as found by Ambjgrn et al. twenty years ago
by numerics. Branched polymers, being singular, colored tensor models still have a way
to go for extracting, via a mechanism like phase transition, a geometry similar to that of
our present spacetime. However, it was clear that more was about to be revealed from
this type of models.

Colored tensor models were also at the basis of the discovery by Ben Geloun and
Rivasseau of the first type of renormalizable nonlocal field theories using tensors of rank
D > 3 [18]. The model, called tensor field theory (TFT), generates 4D simplicial ge-
ometries and was built with fields over U(1)*. Endowed with a Laplacian dynamics like
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usual QFT, TFT interactions were chosen among a set of unitary invariants obtained
from colored models [19]. Written in the momentum space, TFT extends the GW model
to higher rank but also modifies its dynamics. In the last four years, the renormaliza-
tion program for TFTs has achieved many results and uncovered renormalizable actions
which could not have been guessed just a few years ago. Several follow-up studies have
been performed on that framework [20]-[22] (see [22] and [21] for reviews) including the
solution of the GFT renormalization issue.

Why is renormalizability important for TFT, or for any tensor model? Renormaliz-
ability for any quantum field theory is a very desirable feature because it mainly ensures
that the theory is consistent and survives after several energy scales. All known inter-
actions of the standard model are renormalizable. Renormalizability also gives a mathe-
matical sense to a system dealing with infinitely many degrees of freedom by subtracting
divergences entailed by those in physical quantities. Quantum field theory predictability
relies on the fact that, from the Wilsonian point of view [23, 24], these infinities should
not be ignored but should locally (from one scale to the other) reflect a change in the
form of the theory [12]. In particular, if TFTs are to describe at low energy any physi-
cal reality like our spacetime, the renormalization group (RG) analysis for TFTs offers a
natural mechanism to flow from a certain model describing a given simplicial geometry at
some scale to another with another geometry at another scale while dealing consistently
with these infinities.

TFTs possess also another interesting feature. Several models turn out to be UV
asymptotically free [20]-[22][25]. In general, a model is called UV asymptotically free if it
makes sense at arbitrary high energy scales and possesses a trivial UV fixed point defined
by the free theory. Quantum chromodynamics (QCD), the theory of strong interactions, is
a typical example of this kind. From the UV going in the IR direction, the renormalized
coupling constants grow up to some critical value, at which one reaches a new phase
described in terms of new degrees of freedom (quark confinement in QCD). If tensor
models are generically asymptotically free, this could be a nice feature because it would
mean that, (1) in the case that these models actually describe a theory of gravity, this
theory would be sensible at arbitrary high energy, and (2) in the IR, the models likely
experience a phase transition after which, hopefully, the final degrees of freedom may
encode more geometrical data than the initial ones.

In the next section, we will present a generic TF'T model and explain few consider-
ations about it. Then, a streamlined analysis of the amplitudes will be given as well as
its associated power counting theorem. We explain that the analysis of the divergence
degree yields a list of renormalizable models. Section 3 gives a summary of the results
and perspectives of TFTs.

2 Renormalizable TFTs
TFT Models

We now present TFT as a quantum field theory with tensor fields. In the way that
a Dirac field describes a spin—% particle like an electron or a quark and a gauge field

6 IAMP News Bulletin, January 2016



Renormalizable and asymptotically free tensor field theories

describes a spin-1 particle like a photon, the tensor field would describe an elementary
particle of spacetime itself. Adapted to the present situation, our ultimate goal is to make
consistent the scenario that the tensor fields evolve under a certain dynamics to form a
large and continuous universe in which the principles of general relativity must be valid.
Our results are encouraging for the realization of this goal although it will take striving
efforts to get there. We present in the following the simplest class of TF'T models which
have been found renormalizable.

Consider a rank d complex tensor ¢p, with P = (p1,pa,...,pq) a multi-index, and
denote ¢p its complex conjugate. The nature of indices p; can be chosen of several types
but, for simplicity, we consider here that these belong to integers: pp € Z. This choice
corresponds, for instance, to a field theory over d copies of U(1) and consequently ¢p
denote nothing but the Fourier components of a tensor field ¢ : U(1)? — C. As a physical
input, we consider ¢p as a (d — 1) simplex. We refer to such a correspondence, between
tensor fields and simplexes, as duality in the following.

An action S of a tensorial model is built by convoluting replicas of ¢p and ¢p using
kernels. S is of the general form

S[¢,¢] = Tra(¢ - K - §) + pTra(d - 6) + 5™ [9, 9],
Tro(- K -¢) =Y dp K(PiP)gp,  Tra(¢-¢) =D dpdp =D [Oprpmpal”
P

P, P’ i

Sint [§57 Qb] = Z /\anrmy (&nb ' an ’ gbnb) ) (1)

where, like a generalized trace, Tr,, denotes a summation over indices of the n couples
of tensors ¢p and ¢p, K and V,, are kernels to be specified, and y (mass) and ), are
coupling constants. The index b describes a particular type of summation or convolution
pattern. Setting V), to unit weight and restricting the range of the tensor indices pj to a
finite integer Ny, Tr,, generates a unitary invariant [19]. Specifically, we characterize the
kinetic term K in rank d by giving K (P;P’) = 5pi,p2(2?:1p22“), with 8, := H?Zl Opa.p)-
For a field ¢ : U(1)* — C, the kernel K is the sum of 2a-power of the eigenvalues
of d Laplacian operators over the d copies of U(1). The real parameter a is free at
this point but we will choose it positive and such that 0 < a < 1. The kinetic term
Try(¢p - K - @) + puTra(¢ - ¢), at the quantum level, is associated with a Gaussian field
measure

dve(¢, ) = H dbpdep e T2 K-9)+uTra(G-9)] @)
P

of covariance C' = 1/(K + p) for a positive definite kernel K + u. Usually called the
propagator in the language of field theory, C' = C(P;P’) is graphically represented by a
collection of d segments called a stranded line (see Figure 1). We give now examples of
interactions. At fixed d = 3, we can write a ¢*-type interaction using a convolution as

Tryq (¢!) = Z G123 1oz Doy D1z, 123 1= Dpy pops - (3)

Di,D}
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In any rank d, this contraction pattern of the 4 tensors easily extends using the same
cyclic pattern, see Figure 1. It should be clear that the interaction (3) is not symmetric in
its indices (the index 1 breaks the color symmetry). We will always consider a symmetric
interaction S™ by always including all symmetric partners associated with a given convo-
lution pattern. A general interaction is also graphically represented by a stranded vertex

3 3 NG~
3 3 zlvlz' 4 4 21\\://1-2
1 1 1/\1- | 1 /\1
Y S

Rank d = 3 Rank d =4

Figure 1: Examples of rank d = 3 and 4 propagators (stranded lines) and vertices Try,1(¢%)
which are non symmetric with respects to their strands. Vertices represent triangulation of
spheres.

where each index contracted between a ¢ and a ¢ is drawn as a segment between these
two fields. A vertex represents in this framework a d-simplex (in the particular case of (3)
a sphere) obtained by identifying the boundary of its fields, which we recall are dual to
(d—1) simplexes. Thus, a general TF'T Feynman graph is a collection of stranded vertices
joined by stranded propagator lines and represent the gluing of d-simplexes along their
boundary (d — 1)-simplexes. Therefore, they define simplicial complexes. An example of
a TFT Feynman graph is given in Figure 2A.

Correlation functions or correlators of any interacting theory are generally difficult to
evaluate. Hence one focuses on an expansion of correlators at small coupling constants
evaluated with a Gaussian measure similar to dve (2). In most cases, the result of that
expansion diverges, and this calls for the regularization procedure called renormalization.
Each correlator at small couplings expands in Feynman graphs via Wick’s theorem. The
understanding of the correlators of any QFT reduces to the study of Feynman graph
amplitudes. As in usual QFTs, divergences occur in TF'Ts because of sums over infinite
degrees of freedom. At the graphical level, these divergences can be localized by the
presence of close loops also called internal faces (1 dimensional manifolds homeomorphic
to circles, see Figure 2B).

Renormalizable models

We investigate some conditions on TFTs which yield a regularization of their Feynman
amplitudes and then further lead to their perturbative renormalizability. We will restrict
to ¢ : (U(1)P)*¢ — C, producing a D x d field theory. However the roles played by
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(A) (B)

Figure 2: (A) A rank d = 3 TFT graph G made with two Try(¢?) vertices and 2 external legs.
(B) An internal face (in bold) of G.

the two parameters, namely D and d, are different. The kernel K extends simply over
(U(@)P)*.

As an approach for perturbative renormalization, we will use that of multiscale anal-
ysis [12]. The analysis starts by a slice decomposition of the propagator as C' = > C;
where C;, the propagator in the slice i, satisfies the bound C; < kM ~2ie=0M (X1 Ip<|*+n)
for some constants k, M > 1 and i > 0, and Cy < k. For all a € (0, 1], high ¢ probes high
momenta p, of order Ms that we call ultraviolet (UV) regime (corresponding to short
distances on U(1)). Therefore, the slice 0 refers to the infrared (IR). The regularization
scheme requires to introduce UV cut-off A on the sum over . The cut-off propagator
reads as C* = Z?:o C;.

As usual, we write any amplitude associated with a graph G(V, £) as a product of prop-
agators constrained by vertex kernels: Ag = Zps;v [Lic: Cl{Pwo }, {P:ﬂ(e)}] [Loev.s Opewint,o-
Slice all propagators using the slice decomposition, and collect the resulting momentum
scales i, € [0, A] in a multi-index (i)sez. The question is: what is the dependence of AS
in the cut-off A? The answer to that question can be given by an optimal integration
of internal momenta. That analysis is rather involved. We shall only give the upshot of
that analysis.

The following statement holds (power counting theorem [22]): Let G be a connected
graph of the model (1), with set £(G) of lines with size L(G), and set Fiy (G) of internal
faces with size Fi, (G), there exists a large constant K¢ such that

|Ag| < Kg A9, wa(G) = ~2aL(G) + DFiu (G). (4)

The quantity wq(G) is called the superficial divergence degree of the graph G and indicates
if the amplitude related to G is divergent (when wq(G) > 0) or not.

The number of internal faces of G can be calculated in terms of the Gurau degree
of the underlying colored graph [16] and of the degree of the boundary graph (encoding
the boundary of the dual simplicial complex). Gurau’s degree is a sum of genera of
surfaces defined by a colored and canonical decomposition of the TFT graph. A graph
is proved to be maximally divergent if its degree vanishes. In renormalization analysis,
we exclusively deal with graphs with half-edges representing external fields. In TFT, the
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class of graphs which are diverging includes those which have a vanishing degree, with
a vanishing degree of their boundary graph and a restricted number of external fields.
These provide quite stringent conditions (a, D,d) and the maximal power k., of the
interactions Try,_, (¢*) to identify a type of renormalizable model. The list of these
conditions is called the locality principle of the model. Using this list, we can perform
subtraction of the divergences by modifying (renormalizing) the coupling constants in
order to make finite any amplitude when A is finally sent to infinity. The equations of the
renormalized couplings in terms of the initial couplings define the so-called S-function
equations which encode the renormalization group flow of the model.

The fine analysis of the previous degree of divergence of a TFT graph allows one
to obtain the following table of renormalizable models as well as their UV asymptotic
behavior after calculation of their S-functions:

Type Gp PFmax ¢ g  Renormalizability \ UV behavior
TFT U(1) o 4 1 Just- ?
TFT U(1) ot 3 3 Just- AF
TFT  U(1) @ 3 2 Just- ?
TFT  U(1) o' 4 3 Just- AF
TFT U(1) ot 5 1 Just- AF
TFT uiy? ot 31 Just- AF
TFT U(1) o 3 1 Super- AF
gi-TFT  U(1) ot 6 1 Just- AF
gi-TFT  U(1) 6 5 1 Just- ?
g TFT SU(2 @5 3 1 Just- ?
gi-TFT  U(1) P4 1 Super- AF
gi-TFT  U(1) ot 5 1 Super- AF

Table 1: Updated list of renormalizable TFT models and their features; gi-TFTs are
TFTs supplemented by the so-called gauge constraints [11][21]. AF = asymptotically
free.

3 Conclusion and perspectives

We introduced TF'Ts in their simplest form and discuss their renormalizability. Renor-
malizability is a very desirable feature for any QF T, because it reveals a sort of economy
which powers physical predictability: one does not need more than a finite number of
coupling constants and their equations to determine the full physics of the model. To
list renormalizable models and to inventory their features matter for understanding the
tensor theory space, for instance, this will allow us to focus only on their universality
class. Under some hypothesis, our work consisted in providing that list.

The statement of asymptotic freedom concerns the evolution and the limit of the
model if one follows its evolution at higher and higher energy, towards the microscopic
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theory. As a result, we proved that several TFTs evolve towards the free theory. This
implies that, at microscopic level, several TF'T models are always well defined. Another
interesting fact to discuss is the evolution of the model in the opposite regime, when
energy decreases. Then, if there is asymptotic freedom, it generally means that, at some
lower energy, the evolution of the model is subject to a drastic change, and perhaps a
phase transition occurs. A well-known theory having this property is QCD: the coupling
of elementary particles, called quarks, becomes larger and larger, which induces a binding
of these particles to form new composite particles (hadrons), the most stable of which
are involved in the formation of the atomic nucleus (these are protons and neutrons).
For tensorial field theory, asymptotic freedom becomes interesting indeed because we do
not want to stay in a phase where the geometrical spacetime is apparently discontinuous
because spanned by building blocks. The hope here is that, as in QCD, asymptotic
freedom will induce a new phase for tensorial field models, with new degrees of freedom
(“binding” of tensors to draw a parallel with the binding of quarks) able to generate a
nice geometrical universe.

The next big challenge in TFT is to go beyond perturbation theory. Already, inter-
esting features of TF'T arise in their most simple truncation: the existence of an IR fixed
point [26]. If this IR fixed point is stable and generic, we could certainly provide greater
details about the phase transitions and diagrams in the IR, towards new geometrical
phases of discrete models.

The domain of applicability of our results remains again theoretical. As an attempt
to quantize spacetime, our work might be meaningful for this set of approaches, shedding
more light on how to tame divergences in frameworks studying discrete spacetimes (like
causal dynamical triangulations, noncommutative/nonassociative geometry, spin-foam
models etc.). Beyond the realm of quantum gravity, the results and techniques developed
in tensorial models might be useful for field theories using nonlocal interactions, like
effective field theories. In a different area, TFTs are statistical models, and our results
might be important to extend probability theory to random matrix and tensor variables.
We have also developed new combinatorial techniques generalizing results in graph theory
and simplicial geometry. Our hope is that our results will be useful to combinatoricians
interested in finding new invariants on graphs or invariants on simplicial manifolds.
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Lattice models were first introduced in discrete settings for
real life experiments. They have been used to model a large
variety of phenomena, ranging from ferroelectrics to lat-
tice gases. They also provide discretizations of Euclidean
and quantum field theories and are as such important from
the point of view of theoretical physics. While the orig-
inal motivation came from physics, they later appeared to
be extremely complex and rich mathematical objects, whose
study provided an area of cross-fertilization between differ-
ent fields of mathematics (algebra, combinatorics, probabil-
ity, complex analysis, spectral theory to cite a few) and physics (quantum field theory,
condensed matter physics, conformal field theory).

The zoo of lattice models is very diverse: They arise in spin-glasses, quantum chains,
random surfaces, spin systems, interacting percolation systems, percolation, polymers,
etc. The special class of models interesting us here applies to interfaces defined on
planar lattices. These models undergo a phase transition, at which an extraordinary rich
behavior occurs. Through two fundamental examples, we try to illustrate an approach
combining probabilistic techniques and ideas coming from analysis on graphs to describe
this behavior.

A first example: the Self-Avoiding-Walk (SAW)

SAW was first introduced by Orr in 1947 as a combinatorial puzzle. In 1953, Nobel
prize winner Paul Flory popularized (and rediscovered) SAWs by proposing them as
a mathematical model for the spatial position of polymer chains. While very simple
to define, the SAW has turned out to be a very interesting concept, leading to a rich
mathematical theory helping develop techniques that found applications in many other
domains of statistical physics. To name but a few examples of tools that emerged from
the study of SAWs, the lace expansion technique was developed to understand the SAW
in dimension d > 5, and the Schramm-Loewner Evolution was introduced to describe the
scaling limit of the 2D loop erased random-walk, a model directly motivated by the SAW.

Let us describe the SAW more formally (see [MS93] for more details and references).
Consider the hexagonal lattice H (one may also work with the square lattice, but some
results presented below use some integrability properties of the model that are specific
to the hexagonal lattice). A path is a sequence of neighboring vertices 71, ...,7,. It
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Figure 3: A typical 1000 steps self-avoiding walk.

Figure 4: A loop configuration in £ (Q,a,z) with an interface from a to z. The dots
correspond to the boundary of €.

is self-avoiding if the map k + 7, is one-to-one. For each n, the model is defined by
assigning equal probability to all self-avoiding paths with n vertices starting from 0.

Originally, Flory was interested in the geometric properties of the random path. In
particular, he focused on the average distance ||7,|| between =, and 0. Via a clever
argument, he predicted that this average distance grows with n roughly like n%/%. This
prediction was important since it conjectures a behavior which is very different from the
random walk. Interestingly, Flory’s prediction was based on two assumptions which are
not satisfied by the SAW. Nevertheless, destiny can be sweet and the actual behavior
is indeed n/%: the two mistakes made by Flory (one for each assumption) miraculously
cancel each other.

Before discussing the question of the mean displacement further, let us step back and
focus on Orr’s original contribution to the problem at hand. In his article, Orr computed
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the number of SAW (on the square lattice) of length less or equal to 6. With today’s
computers and clever algorithms, one may be able to enumerate SAWs on the hexagonal
lattice up to length 105, but no exact formula giving the number of SAWs of length n in
terms of n seems to emerge from such computations. Nevertheless, some nontrivial things
can still be said about the number of SAWs. For instance, a simple sub-multiplicativity
argument (the number of SAWs of length n + m is smaller than the number of SAWs
of length n times the number of SAWs of length m) implies that the number of SAWs
grows exponentially fast, with a specific rate of growth u. depending on the lattice, and
called the connective constant of the lattice. Much more elaborated physics arguments
provided by the Coulomb gas formalism or conformal field theory refine this prediction,
and suggest that this number is roughly n''/32. y?. Interestingly, u. will not be the same
for the square lattice as for the hexagonal lattice. Nonetheless, the polynomial correction
n'1/32 is present in both cases: the exponent 11/32 is universal.

Despite the precision of the previous predictions, the best results are very far from
tight. Hammersley and Welsh proved that the number of SAWs of length n is between p?
and e?V™) p without computing the constant p. (their argument dealt originally with
the square lattice but it can easily be generalized to the hexagonal lattice). Concerning
the mean-displacement, it is not rigorously known whether the average distance to the
origin grows faster than n'/2. Worse, while the radius of a SAW of length n is obviously
larger than n'/2, it does not imply much on the endpoint, and it is in fact unknown
whether the average of ||7,|| is larger than a constant times n!/?, a statement most of
us would consider tautological. Concerning upper bounds, it was proved only recently
[DH13] that the SAW is sub-ballistic, in the sense that the average of ||v,|| behaves like
o(n) as n tends to infinity. We encourage the reader to try to improve these results on
his own (for instance to provide any type of quantitative upper bound). This should
illustrate the intrinsic difficulty of the model.

The previous contributions on SAWs rely on techniques that were developed roughly
fifty years ago. Since then, very few new tools have been discovered in two dimensions,
with a notable exception that we want to mention now. This idea combines combinatorial
techniques that are reminiscent of the original approach with intuition from the theory
of discrete holomorphic functions. The main object of interested is a certain observable
of the model, i.e. the average of a certain random variable. Let us spend some time to
define it properly.

From now on, a discrete domain will be a collection of half-edges intersecting a family
of faces of the hexagonal lattice forming the closure of a simply connected domain of the
plane; see Fig. 4 (disregard the definition of £(f2,a, z), which will become relevant only
later). Half-edges have two endpoints: one vertex of H and one mid-edge. From now on,
a SAW will systematically run between two mid-edges (it boils down to extending the

SAW by two half-edges).

Let €2 be a discrete domain and a be a mid-edge on the boundary, i.e. at the end of
only one half-edge in Q (see Fig. 4). Fix 2,0 > 0 to be determined later. For a mid-edge
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z € (), define the parafermionic observable via the formula

F(z) = Faaze(z) = Z exp(—ioW, (a, 2)) o verticesine

w

where the summation runs over SAWs from a to z staying in 2. In the definition above,
W, (a, z) is the winding or total rotation of the direction in radians when the SAW w is
oriented from a to z. In other words, it is equal to 7/3 times the difference between the
number of left and right turns of w.

The term involving W, (a, z) may appear as an unnecessary complication. Indeed, for
o = 0, we obtain the generating function of the SAWs in 2 from a to z, which seems
like a very natural object to consider. The advantage of this term is that, when ¢ and =z
are tuned properly, F' satisfies nice local relations as a function of z. Namely, let v be a
vertex in the interior of €2 and p, ¢ and r be the three mid-edges next to v. We identify
v, p,q,r with their complex affixes. If

r=——= and o=—,

2+/2 8

then F' satisfies

(p—v)F(p)+ (¢ —v)F(q)+ (r —v)F(r) = 0. (5)
The set of equations (5) indexed by vertices v in {2 has a beautiful interpretation
in terms of discrete contour integrals. Indeed, fix a sequence I' := (fo,..., fr = fo) of

adjacent faces of €2 and define the discrete contour integral of F' along I' by the formula

]§ F(z)dz = )

1

M2

(fivr — fi)F () =0,

Il
o

where f; denotes the affix of the center of the corresponding face, and z; the center of the
edge between the faces f; and f; 1.

Equation (5) corresponds to the fact that the integral of F' along the “triangular”
contour composed of the three faces around the vertex v is equal to 0. Since any contour
integral can be written as the sum of the triangular contours inside it, the relations
(5) imply that the integral of F' along any discrete contour vanishes. This property is
reminiscent of a classical property of holomorphic functions. For this reason, one may
think of F' as a discrete version of a holomorphic function.

A word of caution: imagine for a moment that we wish to determine F' using only its
boundary values and the relations (5). We have one unknown variable F'(z) by mid-edge,
and one relation per vertex. For generic domains, this is vastly insufficient, and we are
therefore apparently facing a dead end: the fact that the discrete contour integrals vanish
is providing little information on the observable F. In conclusion, a function satisfying
the relations (5) can be seen as some kind of weakly discrete holomorphic function, but
the relations do not allow us to do as much as the standard notion of holomorphicity
does.
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Fortunately, the property above is not meaningless. A careful analysis of contour
integrals going along the boundary of well chosen domains €2 implies that the value
2 + 1/2 mentioned above has to be the connective constant of H. We refer to [DS12b]
for the proof of this result. Let us mention that the value of the connective constant
was predicted by Nienhuis in [Nie82, Nie84] using completely different techniques. The
fact that . has such a simple form can almost be considered as an anomaly. Except for
trees and one-dimensional lattices, the connective constant is not predicted to have any
special form (except for the 3.122 lattice, which is obtained from the hexagonal lattice by
a simple transformation). As an example, the connective constant of the square lattice
can be approximated but no prediction currently exists concerning its exact value. In
fact, it is even unknown whether it should be rational or algebraic for instance.

Computing the connective constant should be considered as a stepping stone towards
a bigger goal since physicists and mathematicians are ultimately interested in the critical
behavior of the model. Let us depart from our combinatorial question (counting SAWSs)
to enter the realm of phase transitions in statistical physics.

Consider a simply connected domain €2 together with two points a and b on its bound-
ary. Also consider the graph Qs = QN JH for 6 > 0. Let as and bs be two mid-edges
on the boundary of €5 close to a and b. We think of the family of triplets (s, as, bs) as
more and more refine (as § \, 0) discrete approximations of (£2,a,b). Let us assume that
the graphs Qs are discrete domains'. We define a model of random interface 7(q; qs.65) 85
follows: SAWs from as to bs in €25 have probability proportional to x# vertices while other
paths have probability zero.

If z is too small, the SAW is too penalized by its length, and v(q;..s5,) converges
in law to the geodesic between a and b in 2. On the other hand if x is too large,
then the SAW is not penalized enough and 7y(q;..s,) converges to a space-filling curve.
The phase transition between these two possible behaviors occurs exactly at the value
xe = 1/p.. While the previous statements about = # x. are now mathematical theorems,
the behavior at the “critical value” x. is still conjectural. Let us describe briefly what is
expected to happen at this special value.

At z = x., conformal field theory predicts that v(q, as,5,) converges in the scaling limit
(i.e. as 0 tends to 0) to a random, continuous, fractal, simple curve (g5 from a to b
staying in §2. Furthermore, the family of random curves 7,4 indexed by the triplets
(Q,a,b) is expected to be conformally invariant in the following sense: for any (2, a,b)
and any conformal (i.e. holomorphic and one-to-one) map ¢ : Q — C,

Y (Y (@,ap)) has the same law as vY(y(Q),p(a)w(0))-

This prediction can be rephrased as follows: the random curve obtained by taking
the scaling limit in (¢)(€2), ¢ (a), (b)) has the same law as the image by v of the random
curve obtained by taking the scaling limit in (€2, a,b). This is clear for a transformation
corresponding to a symmetry of the lattice (for instance the rotation by k%“ for some

!Even though they obviously have no reason to be, one may easily alter the definition of Qs so that
the next discussion is still valid. We therefore prefer to ignore this difficulty.
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k € Z), but this claim implies that the result is true for any conformal transformation
(therefore in particular for a rotation by any angle).

The emergence of these additional symmetries in the scaling limit has tremendous
implications. In particular, Schramm [Sch00] managed to identify a natural candidate for
the possible conformally invariant family of continuous non self-crossing curves. Together
with Lawler and Werner [LSWO04], he was thus able to predict that (44 should be the
Schramm-Loewner Evolution (SLE) of parameter 8/3. This object, which is directly
related to many other lattice models in dimension 2 (in particular simple random walks),
is very well understood. Proving the convergence of y(q; 45,55) t0 SLE(8/3) would therefore
provide deep insight into the behavior of the model at z., and as a byproduct into the
behavior of the uniformly sampled SAW for large n (the two models are closely related).
In particular, it would probably enable one to determine the critical exponents 11/32 and

3/4.

The previous discussion on conformal invariance seems to have carried us away from
our original discussion concerning parafermionic observables, but in fact the two dis-
cussions are deeply related. Indeed, the parafermionic observable is expected to have
a conformally covariant scaling limit. Namely, set Fj for the observable in the domain
Qs with a = as, and fs = Fs(-)/F5(bs) (which depends on s, as and bs). Smirnov
conjectured that if 0 = 5/8 and = = z., then

lim fy = ()", (6)

6—0
where 1) is the conformal map from €2 to the upper half-plane sending a to infinity, b to
0, and with ¢/(b) = 1 (conformal covariance follows readily). Above, the convergence is
uniform on any compact of the domain 2. To come back to the discussion about the fact
that the observable shared the property of vanishing contour integrals with holomorphic
maps, we see that it is in fact expected to converge (when properly renormalized) in the
scaling limit to such a holomorphic map.

In fact the previous conjecture represents the main step in a program dedicated to
the proof of convergence of v(q;,as0,) to SLE(8/3). From this point of view, [DS12b]
is indeed a first step towards a bigger goal. Unfortunately, proving convergence of the
observable seems out of reach at the moment. Nevertheless, a similar program has been
carried out for a different model, and we propose to switch now to this model to discuss
parafermionic observables further. While the connection to the story above will not be
immediately apparent, it will become clearer as the discussion progresses.

A second example: the Ising model

The Ising model was introduced by Lenz in 1920 to model the Curie temperature. It has
been used to model a wide variety of phenomena in physics, ranging from ferromagnetism
to spin glasses. In fact, the Ising model finds new applications in other fields of science
(such as biology, neuroscience, etc) every single day. We will focus on the nearest-neighbor
ferromagnetic Ising model on the hexagonal lattice. Let G = (V| E) be a finite subgraph
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of H. Define the Hamiltonian Hg (o) of a configuration ¢ = (o, : u € V) of spins
ou € {£1} by the formula
S 0.

{uv}eFE
For > 0and f:{£1}V — R, let

Z flo ¢ BHac (o)

oe{£1}V

Z e—BHa(o)

ce{x1}V

<f>G,,B =

The measure ()¢ is called the Ising measure on the graph G at inverse-temperature
g > 0.

When working with the Ising model, one is usually interested in quantities of the
form (J],c40u), where A C V. The operator o, associated to a vertex w characterizes
the phase transition and is as such an order operator. From the point of view of field
theory, it is convenient to consider a different type of operators associated to faces, which
is corresponding to disorder operators. Let f, g be two faces and introduce a cut C from
f to g, i.e. a sequence of adjacent faces starting from f and ending at g. Consider fis/14
to be the operator reversing the value of the coupling constants of the edges between
successive faces of the cut (we identify the cut with this set of edges). In other words,

pr(o)pg(o) == exp < —2p Z Tuly).
{u,v}eC

Observe that the operator depends on the cut C and on 3. The use of such disorder
operators goes back as far as the original exact solutions to the 2D Ising model and is
fundamental in the study of the critical behavior of the model (since it pops up every-
where, we do not give a specific reference).

We would like to manipulate order and disorder operators. To do this, we consider
the high-temperature expansion of the Ising model, which we present briefly now. As
observed by van der Waerden, the identity

exp(fBoy0,) = cosh(f5)(1 + tanh(B)o,0,)

allows the partition function of the Ising model to be expressed as follows:

Z e PHc) — cosh(B)IE! Z H (1 + tanh(B)o,0,)

oce{£1}V oc{x1}V e={u,v}eF
= cosh(ﬂ)‘E| Z <H tanh(ﬁ)) (Z JL{vi{uvv}Gw}l)
wCG  ecw UEW
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For any u € V, associating the configuration o with the same configuration except that
the spin at w is flipped implies that the last sum is equal to

{ AV if w e £(G),

0 otherwise,

where £(G) denotes the set of even subgraphs of G, that is, the set of subgraphs w of G
such that every vertex of GG is incident to an even number of edges of w. Note that on a
subgraph of the hexagonal lattice, w € £(G) is the disjoint union of self-avoiding loops.
We deduce that

Z e~ PHal?) — cosh(B)F1 2V Z zl, (7)

oe{£1}V wel(G)

where z := tanh(f). A similar computation shows that for A C V,

Z (H O'u) e BHa(o) — cosh(ﬁ)|E| olV| Z x"“',

oe{£+1}V u€A weé(G,A)

where £(G, A) denotes the set of subgraphs w of G such that every vertex not in A (resp.
in A) is incident to an even (resp. odd) number of edges in w. Altogether, we get

ZwES(G A) all
([T owes = ==

—.
ueA 2 wee(c) T

In other words, correlations between order operators can be expressed in terms of
ratios of weighted sums over subgraphs of G. But what happens when one mixes order
and disorder operators? Let us take a specific example. Consider a discrete domain (2
and a vertex u on its boundary. Also consider a vertex v € € and a cut C between a
face f outside {2 and bordered by u and a face g bordered by v. When doing the same
expansion as above, one obtains that

ZwES(G,{u,v}) (—1)kenClgl]
ZwGS(G) al!

(8)

<Uu0v ,uf:ug>G,B =

Since w € (G, {u,v}) is the disjoint union of self-avoiding loops and a self-avoiding path
from u to v, the loops do not surround v and therefore contribute an even number to
lwNC|. As a consequence, only the self-avoiding path from u to v can contribute an odd
number, which corresponds modulo 2 to the number of turns that the path does around
the face f.

Now, Smirnov introduced an observable at mid-edges by considering the following
quantity: let £ be a discrete domain, a a mid-edge on its boundary and z a mid-edge
inside. Consider the set £(£2,a, z) of “subgraphs of " obtained as the union of disjoint
self-avoiding loops plus a SAW from a to z avoiding the loops. Let |w| be the number
of vertices in w (note that it is also the number of vertices, if the two half-edges arriving
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at a and z contribute 1/2). Also set W (a, z) for the winding of the SAW from a to z.
Then define

F(z) = Faa.(z) = Z exp(—1W,(a, 2)) !,

we&(N,a,z)

The observable has a structure similar to the one of the SAW, with o = 1/2 instead of
o = 5/8 and the sum on SAWSs replaced by a sum on subgraphs w € E(Q, a, z). Consider
the specific case of configurations for which the SAW arrives from one endpoint (say v)
of the edge corresponding to z. In such case, the term corresponding to the winding
contributes —\ or A depending on the parity of the number of turns around the mid-
edge z. A small leap of faith (or a small computation using the previous observation,
which we leave to the reader) shows that F is in fact a complex linear combination of
quantities of the form (8), where v is one of the two endpoints of the edge of z, and g one
of the two faces bordered by z. To summarize, an observable similar to the parafermionic
observable for SAWs can be defined in the Ising model as a linear combination of order-
disorder operators.

The similarity between the observables for SAW and Ising is uncanny. It does not
come as a surprise that for a certain value z,. of x, the Ising observable also satisfies the
relations (5). This value is in fact equal to 1/v/3 = tanh(B,), where 3, is the critical
inverse-temperature of the Ising model on H. Exactly as in the case of the SAW, one
may ask whether, when considering a sequence ({25, as, bs) approximating (€2, a,b), fs =
Fs(-)/F5(bs) converges.

The Ising model has a tactical advantage compared to SAWs. The value of ¢ is 1/2
instead of 5/8. This apparently small difference was harvested by Chelkak and Smirnov
to prove that the observable fs satisfies additional relations, and that it is now discrete
holomorphic in the standard sense, not only weakly. In particular, fs is determined
uniquely by its boundary conditions and these relations. Let us mention that discrete
holomorphicity goes far back. Discrete holomorphic functions have also found several
applications in geometry, analysis, combinatorics, and probability. We refer the interested
reader to [DS12a] for more references on this beautiful theory.

Anyway, Chelkak and Smirnov [CS12] were able to describe f5 as the solution of
a discrete “Riemann-Hilbert” boundary value problem. With some additional work,
they also showed that such a solution must converge to the holomorphic solution of the
corresponding continuous Riemann-Hilbert boundary value problem. As a consequence,
they were able to rigorously prove that

hmf5 = lea
6—0

where 1 was defined in (6).

Using a program similar to the one that could potentially be used for SAW | interfaces
of the Ising model with Dobrushin boundary conditions were proved to converge to SLE(3)
in [CDH*14]. In other words, conformal invariance of interfaces can be proved rigorously
in the case of the Ising model.
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Figure 5: Phase diagram of the loop O(n) model on the hexagonal lattice.

Let us conclude this part by mentioning that since the breakthrough of [CS12], con-
formal invariance of many observables of the Ising model has been derived: crossing
probabilities [BDH14], energy and spin fields [HS13, Hon10, CI13, CHI15]), etc.

The parallel between the stories of the SAW and the high-temperature expansion of
the Ising model leaves little doubt about a connection between the two models. A model

indeed interpolates between the two examples above, and we propose to discuss it briefly
below.

The loop O(n)-model

The high-temperature expansion of the Ising model and the SAW are both part of a wider
family of statistical models, called the loop O(n)-model. In this model, a configuration
w is an element of £(G) and the probability of w is proportional to x# edgesp# loops — Fop
n =0 and n = 1, we recover the SAW and the high-temperature expansion of the Ising

model respectively. The phase diagram (Fig. 5) of the loop O(n) model on the hexagonal
lattice was predicted by Nienhuis in [Nie82, Nie84]:

1. For n < 2 and x = z.(n) := 1/4/2 + /2 — n, the probability of having a loop of
length ¢ passing through the origin decays as an inverse power of . Furthermore,
the scaling limit of the loops is described by a conformally invariant family of simple
loops called CLE(k) (where x depends on n and ranges from 8/3 to 4).

2. For n < 2 and x > z.(n), the probability of having a loop of length ¢ passing
through the origin decays as an inverse power of £. Furthermore, the scaling limit
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of the loops is described by a conformally invariant family of self-touching loops
called CLE(k) (where x depends on n but not on x > z.(n) and ranges from 4 to
8). Except for n = 2, the exponent in the inverse power is not the same as the one
at x.(n).

3. Otherwise, the probability decays exponentially fast. In particular, for n > 2 the
probability of having large loops is always decaying exponentially fast.

Most of the previous diagram is still conjectural. Nevertheless, a generalization of the
previous observables provides some understanding on what is going on. Exactly like in
the examples of the SAW and Ising, one may introduce an observable

F(z) = Faaine(2) = Z exp(—ioW,,(a, z)) o edees pi#loops,
weE(Q,a,2)

For n < 2, two values of (z,0) play a special role in the sense that the corresponding
observable has vanishing contour integrals. The first one is for z = z.(n) and ¢ = o(n)

(the value is irrelevant here). The other value is at * = Z.(n) = 1/4/2 — /2 —n and
g = &(n). One expects that the observable fs defined as above would converge to
(¥")° for (ze(n),o) and (¢')° for (Z.(n),5). The values of o and & allow to predict
the dependency of the value x of the CLE(k) on n (see Fig. 5 for the precise values).
Furthermore, proving convergence of the observable represents the main step towards a
proof of conformal invariance for the whole family of loops.

Interestingly, no good observable seems to be available for n > 2. It is therefore
unclear how to prove that there is exponential decay at every x for n > 2. Nevertheless,
we should mention a recent result proving this for n > 1 [DPSS14]. This result should
be compared to a conjecture of Polyakov concerning the spin O(n) models, that yields
that spin-spin correlations decay exponentially fast at every inverse temperature in the
2D spin O(n) model as soon as n > 2. While the previous result does not answer this
conjecture, it is worth noting that the loop O(n) model can be seen as an approximative
high-temperature expansion of the spin O(n) model for integer values of n.

Conclusion

The take-home message is the following: the order-disorder operators of the Ising model
give rise, when written in terms of the high-temperature expansion, to discrete holomor-
phic observables. As a consequence, one may prove that they converge in the scaling
limit to conformally invariant objects, a fact which leads to conformal invariance of inter-
faces. Certain generalizations of these quantities to loop models are still discretizations
of conformal maps. Proving their convergence in the scaling limit would imply conformal
invariance of loops in the corresponding model, but unfortunately, in basically any case
except the Ising model, the properties of the observables are insufficient to derive rigor-
ously the convergence. Still, weaker properties of the observables can be used to derive
interesting features such as critical points and bounds for critical exponents.

24 IAMP News Bulletin, January 2016



Parafermionic observables and their applications

Let us conclude by mentioning that the name parafermionic observable was coined in
[FK80], where these observables were introduced initially.

Let us mention that parafermionic observables are not restricted to the loop O(n)
model and can be used in many other models. Maybe the most notable example is
provided by the Fortuin-Kasteleyn percolation and Potts models, where they were used
to determine the order of the phase transition, see [DST15].
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Obituary

Rudolf Haag
(1922 — 2016)

Rudolf Haag was born on August 17, 1922 in the university town of Tiibingen. His father
was a mathematics teacher, his mother was actively engaged in social and gender politics.
After finishing school he was visiting his sister in London just when World War II started.
As a consequence, he had to spend the time of the war in a camp of civil prisoners in
Canada.

After the war he returned to Germany. He studied physics in Stuttgart and Munich,
where he got his PhD in 1951 under Fritz Bopp and became his assistant. Two visits to
Copenhagen allowed him to have extensive discussions with Niels Bohr and his group, and
after his habilitation he went to Werner Heisenberg in Gottingen. Subsequently, he was
visiting professor in Marseille and Princeton, and in 1960 he became professor in Urbana,
[linois. In 1966, he accepted a call from the University of Hamburg, where he stayed
until his retirement in 1987. After his retirement he moved to Fischhausen-Neuhaus, a
little village on lake Schliersee in the Bavarian Alps. There he stayed till the end of his
life. He passed away on January 5, 2016.

Rudolf Haag received the Max-Planck medal of the Deutsche Physikalische Gesellschaft
in 1970 and the Henri Poincaré Prize in 1997. He was member of several academies
(Leopoldina, Gottingen, Bavaria and Austria). Together with Res Jost, in 1965 he
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founded the journal Communications in Mathematical Physics, and he acted as its editor
in chief up to 1973.

Rudolf’s early work was concerned with the way particles and fields are related to each
other. The question how to construct scattering states in quantum field theory (QFT)
was his concern since the times with Heisenberg. With him he had an exchange on that
problem of the following sort, as he told us.

Haag: “How do you construct the scattering states say of two particles?”

Heisenberg: “Just take the product of the state vectors!”

Haag: “But in a Hilbert space we have linear combinations, not products!”

Heisenberg: “Never mind, take the product!”

Rudolf thought that Heisenberg was right, except that one had to construct a product.
That he achieved in the fifties along with the development of the fundamental idea of
locality of fields and observables, which he identified as the most characteristic feature of
relativistic QFT.

His paper “On Quantum Field Theories” [1955] marks a crucial breakthrough for the
understanding of this fundamental topic. In particular, his result on the impossibility
of using the Fock representation of the canonical time zero fields to describe interaction
soon became known as Haag’s Theorem.

Shortly afterwards, Rudolf realized that the idea of a one-to-one correspondence be-
tween particles and fields was misleading; particle states could well be reached by poly-
nomials of field operators acting on the vacuum. This led him to recognize the central
role of the local algebras generated by field operators, which are smeared over bounded
spacetime regions and commute or anticommute at spacelike separations. This idea, pre-
sented in 1957 at the Lille Conference [1957], was essential for the actual construction of
scattering states which Rudolf achieved in those years. The methods and ideas presented
by Rudolf later became a key ingredient in theorems of David Ruelle, Klaus Hepp and
Huzihiro Araki, and are now called Haag-Ruelle scattering theory. The origin of the par-
ticle structure of QFT as a consequence of locality was fully clarified in this work, and a
proof was given of the LLSZ asymptotic condition, whose basic form was anticipated by
Rudolf already in [1955].

In those years, Rudolf’s keen insight that the local algebras are the central objects
of the theory, was also made mathematically precise. Taken up by Araki, who had
characterized the local algebras of fields and observables in his 1962/63 Ziirich lecture
notes as von Neumann algebras, it took eventually the perfect shape in a paper by Rudolf
with Daniel Kastler [1964]. The new point of view was the emphasis on observables
whose characteristic feature is their commutativity at spacelike separations. Thus the
central concept was the algebras generated by local observables. The understanding
of the approximate nature of our knowledge of physical states, translated into precise
mathematical terms, led the authors to describe those algebras as C*-Algebras, i.e. as
norm-closed *-algebras of bounded operators on some Hilbert space.

That was the beginning of a new science, the algebraic approach to quantum field
theory, better named “local quantum physics” (LQP) by Rudolf. This new paradigm
was reached by Rudolf following a path which also went along collaborations with Hans-
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Jiirgen Borchers and Bert Schroer. It proved to be essential for the understanding of the
central role of the locality postulate and the unraveling of its unreasonable effectiveness
in determining a surprisingly large part of the structures appearing in QFT. Moreover,
a new and fruitful contact with mathematics was initiated by it. After the previous
exchange of QFT with the theories of distributions and holomorphic functions in the
Wightman framework, it now was the theory of operator algebras.

This contact first culminated in the work on the characterization of equilibrium states
in the statistical mechanics of infinite quantum systems by the KMS condition [1967] (to-
gether with Nicolaas Hugenholtz and Marinus Winnink). It strongly influenced modular
theory, developed by Minoru Tomita and Masamichi Takesaki. In collaboration with
Daniel Kastler and Ewa Trych-Pohlmeyer, Rudolf later characterized the KMS states in
terms of stability properties under local perturbations of the dynamics. Furthermore, in
a collaboration with Araki, Kastler, and Takesaki, the chemical potential was explained
in terms of extensions of KMS states from the observables to charged fields.

Then, on the side of QFT, the contact with mathematics became manifest in his work
on superselection sectors (with Sergio Doplicher and John Roberts [1971]), which has
proved to have common roots with the theory of subfactors, later invented by Vaughan
Jones. It also provided the basic frame for the operator-algebraic approach to conformal
field theory by Jiirg Frohlich, Yasuyuki Kawahigashi, Roberto Longo and Karl-Henning
Rehren. In that work the amazing effectiveness of LQP manifested itself in the explana-
tion of the appearance of particle statistics and of its restriction to the cases of (para)
Bose or (para) Fermi. (The singular case of infinite statistics was later excluded by Detlev
Buchholz and Klaus Fredenhagen in theories of massive particles.) These results hold in
all theories describing local observables in four-dimensional Minkowski space which are
devoid of massless particles and long-range forces.

That fruitful ground continued to sprout. In the course of time the structure of supers-
election sectors of the local observables proved to reveal the existence of a unique compact
group of global internal symmetries and to determine uniquely a field algebra obeying
ordinary commutation or anticommutation relations at spacelike separations (Doplicher
and Roberts). More recently, in the special case of simple sectors (ordinary statistics),
the analysis of superselection sectors could be extended to theories with massless particles
(Buchholz and Roberts). All of these results are implied by the locality of observables
and do not require any ad hoc assumptions about unobservable fields.

On a different side, while constructive field theory had been successfully developed
within the Wightman framework by James Glimm, Arthur Jaffe, and many others, the
algebraic approach seemed ideal for deducing general structures from first principles, but
unfit for a constructive approach. Yet, on the contrary: thanks to works by Hans-Jiirgen
Borchers, Gandalf Lechner, and Bert Schroer, it was possible to establish by algebraic
means large families of interacting (integrable) models in two spacetime dimensions which
were not covered by the previous constructive approach. This work continues and is a
remarkable example how the quest for the understanding of first principles and their
structural analysis might pay in the end.

Rudolf gave a lot of inspiration to mathematics, but his main interest was physics.
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He was deeply concerned about a lack of understanding, in terms of local observables,
of gauge theories (a missed opportunity, as, quoting Dyson, he termed it in his address
at the Gottingen conference “Algebraic Quantum Field Theory — the first 50 Years,”
where also his picture shown above was taken), and he was enthusiastic when the idea
of supersymmetry appeared. Actually, his paper on the possible supersymmetries of the
S-Matrix (with Jan Lopuszanski and Martin Sohnius) [1975] is his most cited paper.

In later years, Rudolf became interested in the relation between QFT and gravity.
First results on the connection between stability and thermal properties of states with
their small-scale structure were obtained in collaborations with Heide Narnhofer and Ul-
rich Stein [1984], and with Klaus Fredenhagen [1990]. These papers provided an impor-
tant foundation for the modern approach to QFT on curved spacetimes which developed
during the last twenty years.

More recently, Rudolf’s interest moved to the foundations of quantum physics, where
he tried to base the theory on the concept of events and their causal relations. In this
context, he studied in detail the detection process in elementary particle physics and also
in quantum optics. His insights and ideas also found expression in the second edition of
his book, which he wrote after his retirement [1992]. In this book he presented his view
on quantum physics in a coherent way; it is now a standard reference for the subject, and
it is an indispensable reading for everybody interested in the conceptual foundations and
the accomplishments of LQP.

Rudolf, being first and foremost interested in physics, always searched for the under-
lying deeper structures and identified concepts which were amenable to a precise mathe-
matical formulation. He was well aware of the intricacies of that ground, requiring subtle
thoughts. During discussions with his collaborators he liked to rub between his fingers a
thin leaf of grass, recalling a conductor’s baton, which in the most delicate passages of
the discussion he would use sometimes to titillate his ear, as an aid to hear the music of
ideas. He would begin discussions sitting down and invite others to sit, saying, with a
smart smile: “Let’s think”.

His invaluable example, and school for his students, was indeed a lesson of thinking:
never being satisfied with the achievements reached, but aware of the ever more relevant
problems yet lying beyond the borders; loving mathematical precision and elegance, but
knowing that mathematics cannot think for us nor provide by itself solutions to the
questions of physics.

In the last few years Rudolf had serious problems with his sight; almost fully deficient
in one eye, largely impaired the other. Yet he tried to read papers on his computer using
huge magnifications and to attend talks watching the screen through special lenses, and
he succeeded in writing scientific papers. In 2013 he had a stroke, which did not affect at
all his mental clarity and scientific curiosity, but limited his left-side mobility. He tried
to keep updated also by conversations with and reports by his former students. And he
kept pursuing his idea of a central role of “events” till the end.

Rudolf’s subtle thinking allowed him to show often a very subtle humor, with a world
view that was probably influenced also by his deep love for music; on which he often would
make non trivial comments. Listening with one of us to a Beethoven sonata, played by
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a famous artist, he would say: “Why does he try to make it sweeter? It has to be sharp,
even unpleasant!”. He was right!

At younger ages Rudolf had played the violin, but later he favored the piano, which
he played on almost every day. He did not refrain from it even after his stroke, playing
then with his right hand only, and improvising on music which was close to his heart. He
had wished to do that on his last night, too, when he passed away peacefully, surrounded
by the love of his family.

Rudolf was twice a widower, of Kéthe first, then of Barbara; with his first wife he had
four children, Albert, Friedrich, Elisabeth and Ulrich.

His death is a tremendous loss for our scientific community. It is the end of an era
for science, for theoretical physics, for quantum field theory, not just for local quantum
physics alone; and the end of a paramount important part of the life for those who had
the privilege of being his collaborators and friends.

Detlev Buchholz, Sergio Doplicher and Klaus Fredenhagen
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Barry Simon to Receive 2016 AMS Steele Prize
for Lifetime Achievement

Barry Simon of the California Institute of Technology will receive the 2016 AMS Leroy
P. Steele Prize for Lifetime Achievement for “his impact on the education and research
of a generation of mathematical scientists through his significant research achievements,
his highly influential books, and his mentoring of graduate students and postdocs.”
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Simon’s mathematical talent showed early in life. In 1962, at the age of 16, he was the
subject of a short article in The New York Times, which recounted the story of Simon’s
participation in an exam contest sponsored by the Mathematical Association of America
and the Society of Actuaries. After missing one question, he argued that the wording of
the question had been ambiguous. The contest sponsors agreed, and Simon was awarded
a perfect score.

An alumnus of Harvard University, Simon received his PhD from Princeton Univer-
sity in 1970 and was immediately appointed as an assistant professor. In the decade that
followed, as Simon rose to the rank of full professor in 1981, Princeton became a thriv-
ing center for mathematical physics, particularly in statistical mechanics, quantum field
theory, and non-relativistic quantum mechanics. One of Simon’s PhD students from that
time, Percy Deift, described the atmosphere this way: “Barry was a dynamo, challeng-
ing us with open problems, understanding every lecture instantaneously, writing paper
after paper, often at the seminars themselves, and all the while supervising 7 or 8 PhD
students.” Deift made these remarks in the laudatio for the Poincaré Prize, awarded to
Simon in 2012.

Simon’s prodigious productivity continued after he moved to Caltech in 1981 to take
his present position as the IBM Professor of Mathematics and Theoretical Physics. To-
day his list of research publications includes over 400 items. His secret? He needs “only
five percent of the time ordinary mortals need” to write a research paper, quipped his
collaborator Jiirg Frohlich, in a reminiscence prepared for a conference celebrating Si-
mon’s 60th birthday. Simon has had 31 graduate students, many of whom have gone to
become leaders in mathematical physics and other areas, and he has mentored about 50
postdoctoral researchers.

Simon’s own research contributions range over several areas of pure mathematics and
mathematical physics. One of his most important contributions still stands as a landmark
today: After nearly 40 years, work done by Simon and 4 co-authors (Frohlich, Thomas
Spencer, Freeman Dyson, and Elliott Lieb) still stands as the only rigorous proof of
symmetry breaking in certain regimes fundamental to physics.

Simon was the first to give a mathematically precise definition of resonance that
allowed linking of time-independent and time-dependent perturbation theory and the
first to use differential-geometric invariants to understand Berry’s phase and some other
quantum phenomena. In work with Lieb, Simon produced the first rigorous proofs and in-
terpretations of theories central to quantum mechanics. A leading contributor to the con-
struction of quantum fields in two space-time dimensions, Simon (together with Francesco
Guerra and Lon Rosen) established an analogy with classical statistical mechanics that
led to deep new insights. Simon also proved several definitive results in the general theory
of Schrodinger operators.

In addition to his outstanding contributions at the forefront of research, Simon is
known for several books that have had a major influence on generations of students
entering the field of mathematical physics. His 4-volume work Methods of Modern Math-
ematical Physics, written with Michael Reed during the 1970s, is where many of today’s
top researchers first learned this subject. Simon’s uncanny ability to extract the key
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elements in a proof “is expressed in his books as a signature combination of economy and
clarity, which accounts, I believe, for their usefulness and great popularity,” remarked
Deift in the Poincaré laudatio. Simon’s two-volume set Orthogonal Polynomials on the
Unit Circle, published by the AMS in 2005, became instant classics, connecting the theory
of orthogonal polynomials with the spectral theory of Schrodinger operators and other
topics in mathematical physics.

On top of all of his other contributions, Simon is also the co-author of two highly
popular manuals for Windows computers: The Mother of All Windows Books and The
Mother of All PC Books, which appeared in the 1990s. Written with Woody Leonhard,
the books provided clear and practical advice in a witty and irreverent style, making them
highly popular with computer users struggling to make sense of their costly machines.

In addition to the aforementioned Poincaré Prize (2012), Simon’s previous awards
include several honorary degrees and the Bolyai Prize of the Hungarian Academy of
Sciences (2015). He was named a Fellow of the AMS in 2013.

Presented annually, the AMS Steele Prize is one of the highest distinctions in math-
ematics. The prize will be awarded on Thursday, January 7, 2016, at the Joint Mathe-
matics Meetings in Seattle.

American Mathematical Society News Release, reprinted with permission.

Photograph taken by Bob Paz, reproduced by courtesy of California Institute of Technology.

The editors recall that two conferences in Canada will celebrate Barry Simon’s 70th birthday
next summer; see http://www.fields.utoronto.ca/programs/scientific/16-17 /modern-physics/ and
http://www.crm.umontreal.ca/2016/Simon16 /index_e.php for details.
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News from the IAMP Executive Committee

News from the IAMP Executive Committee

New individual members

IAMP welcomes the following new members

1. PROF. VIRGINIE BONNAILLIE-NOEL, ENS Paris - CNRS, France
2. DR. MUHAMMAD ROSHANZAMIR-NIKOU, Urmia University, Iran

3. DR. ALESSIA NOTA, University of Bonn, Germany

Recent conference announcements

Geometrical aspects of spectral theory
April 4-6, 2016. BCAM workshop, Bilbao, Spain.
This conference is partially supported by the TAMP.

vvvvv

http://gast2016-bcam.blogspot.com.es

Conference - DimaScat : Scattering Theory and Spectral Asymptotics of
Differential Operators - in Honour of Dimitri Yafaev

April 20-22, 2016. University of Rennes, France.
Organized by N. Raymond, K. Pravda-Starov, S. V. Ngoc.
http://www.lebesgue.fr/content /sem Yafaev- Yafaev

Fifty Years of Hearing Drums: Spectral Geometry and the Legacy of Mark
Kac

May 16-20, 2016. Universidad Catolica de Chile, Santiago, Chile.
Organized by Rafael Benguria and the Nucleo Milenio de Fisica Matematica
http://www.fis.puc.cl/ icmsmag/SpectralGeometryConference

IAMP News Bulletin, January 2016 35


http://gast2016-bcam.blogspot.com.es
http://gast2016-bcam.blogspot.com.es
http://www.lebesgue.fr/content/semYafaev-Yafaev
http://www.lebesgue.fr/content/semYafaev-Yafaev
http://www.lebesgue.fr/content/semYafaev-Yafaev
http://www.fis.puc.cl/~icmsmag/SpectralGeometryConference
http://www.fis.puc.cl/~icmsmag/SpectralGeometryConference
http://www.fis.puc.cl/~icmsmag/SpectralGeometryConference

News from the IAMP Executive Committee

Mathematical Physics Days in Hagen

May 17-19, 2016. FernUniversitat in Hagen, Germany.
Organized by P. Hislop, W. Spitzer and S. Warzel
This conference is partially supported by the TAMP.
https://www.fernuni-hagen.de/mathphysdays2016/

Analysis and beyond

A conference celebrating Jean Bourgain’s work and impact.
May 21-24, 2016. IAS Princeton.

This conference is partially supported by the IAMP.

Organized by A. Gamburd, S. Jitomirskaya, A. Naor, P. Sarnak, T. Tao, G. Staffilani, P.
Varju.

https://www.math.ias.edu/bourgainl6

Mathematical Many-Body Theory and its Applications
June 13-19, 2016. BCAM, Bilbao, Spain.
This conference is partially supported by the TAMP.

Organized by S. Adams, M. Benitez, S. Breteaux, J.-B. Bru, W. de Siqueira Pedra, M.
Merkli.

http://www.bcamath.org/es/workshops/mmbta

Great Lakes Mathematical Physics Meeting 2016
June 17-19, 2016. Michigan State University.

This conference is partially supported by the TAMP.
Organized by J. Schenker and P. Hislop.
http://instmathphys.msu.edu/glamp2016

Quantum Roundabout 2016
Student conference on the mathematical foundations of quantum physics.

This conference is partially supported by the TAMP.
July 6-8, 2016. The University of Nottingham.
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Organized by P. Liuzzo-Scorpo, R. Nichols and B. Regula.

The 9th MSJ-SI “Operator Algebras and Mathematical Physics”
August 1-12, 2016. Tohoku University, Sendai, Japan.

Organized by M. Izumi, Y. Kawahigashi, M. Kotani, H. Matui, N. Ozawa.
http://www.ms.u-tokyo.ac.jp/ yasuyuki/msj-si2016.htm

Sirince Summer School in Mathematical Physics
August 22 - September 4, 2016. Sirince, Turkey.

This conference is partially supported by the TAMP.
Organized by A. Mardin, T. Turgut, A. Yilmaz.
https://matematikkoyu.org/eng/events/2016-fizik /index.php

QMath13: Mathematical Results in Quantum Physics
October 8-11, 2016. GeorgiaTech, Atlanta, USA.

This conference is partially supported by the TAMP.
Organized by F. Bonetto, E. Harrell, M. Loss.
http://qmathl3.gatech.edu/

Open positions
Postdoctoral Position in Random Matrix Theory, Bielefeld

Applications are invited for a postdoctoral position in the area of random matrix theory
and its applications in particle physics, statistical mechanics and mathematics. The
successful applicant will work in the Mathematical Physics group of Professor Gernot
Akemann at the Department of Physics, Bielefeld University, Germany. The deadline for
applications is Feb. 15, 2016. More information on how to apply can be found at

https://www2.physik.uni-bielefeld.de/1387 .html

More job announcements are on the job announcement page of the IAMP
http://www.iamp.org/page.php?page=page_positions
which gets updated whenever new announcements come in.

Benjamin Schlein (IAMP Secretary)
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