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Editorial

Looking back to the IAMP roots

by Pavel Exner (IAMP President)

Our Association is not old in terms of generations but it is not
new either; a third of a century is a solid period of time and
our path from the origin in the seventies of the last century has
been long and full of events.

It is an old truism that a future of a community is full of
uncertainties if it does not remember its past. Keeping records
is usually not the first concern in the foundation years but
as the time passes you start noticing that it is useful to look
back sometimes — be it seeking a reference point in previous
decisions, an encouragement in the way we were able to face
troubles in the past, or simply a sense of identity of a group of
like-minded people.

History comes to us in many different forms. There are
great deeds worth chanting in a Song of Roland and there are

lesser things, down to an archaeology in everyday activity records. A correct historical
picture cannot exist without all of these components. This applies not only to big entities
but by the same right to smaller ones such as our Association.

In the interview published in the previous issue Professor Araki recalled some stories
of the early days, and I hope very much that they would encourage the others who were
there at that time to put their memories into writing. There are certainly stories to tell,
in particular, because the birth of the IAMP witnessed competing concepts giving the
process a certain dramatic quality which would be worth recording.

We tried to work recently on the “archeological” end of the Association history by
compiling and digitizing a collection of IAMP bulletins from its prehistory in 1976 up to
1997 when, under the Presidency of Elliott Lieb, the News Bulletins switched from the
mimeographed sheets or booklets to an electronic form. A few weeks ago the collection
was posted at our web page, cf.

http://www.iamp.org/page.php?page=page veryoldbulletin .

The material was dug out from the bottom of personal drawers and does not aspire
for completeness — additions from oldtime members are welcome — but its more than
nine hundred pages gives you a colorful picture of mathematical-physics activities in the
first two decades of the IAMP existence. The documentary value of the old bulletins lies
in part in the fact that they collect information which since the nineties we learned to
store and retrieve electronically, on preprints, books, conferences, etc. Looking through
the pages you will appreciate the amount of the work done by our community in a
generation. Enjoy browsing the old pages.
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Early history of the Bose gas

Some early history of the mathematical physics of the

Bose gas

by Elliott H. Lieb (Princeton, USA)

One of the founder of the contemporary Mathematical Physics,
Elliott H. Lieb has been a professor at Princeton since 1975,
following a leave from his professorship at MIT. He has been
awarded several prizes in mathematics and physics, includ-
ing the Henri Poincaré Prize of the IAMP (2003) for his
life achievements in quantum mechanics, statistical mechanics
and analysis. Professor Lieb has twice served (1982-1984 and
1997-1999) as the President of the International Association of
Mathematical Physics.

Valentin Zagrebnov, the current editor of the IAMP News Bul-
letin, has raised its level in a major way by including survey

articles of general interest to the members of IAMP. One topic he thought should be
reviewed is the history of the mathematical physics of the Bose gas, a subject to which
he has also contributed.

In response to his request I decided that while several people could do a better job
than I can about relating developments after 1998, as well as summarizing the current
status of the field, one thing I could contribute was to relate some of the long ago events
in which I participated. The year 1998 is significant for me because it is the year in
which Jakob Yngvason and I solved a problem that arose four decades earlier, and which
gave rise to the work by several authors on the ground states of low density Bose gases
with pairwise interactions. (Some of this work is summarized in a book†, and by Robert
Seiringer in this News Letter.) This largely personal history could be useful to young
people today who might be discouraged about the possibility of achieving apparently
unreachable goals, such as a proof of Bose-Einstein condensation (BEC). Some of the
theorems we now take for granted seemed, at one time, also to be unreachable.

My interest in the subject started in 1958 when I went to Cornell University to be
a postdoc with Hans Bethe. In 1957 T-D. Lee, K. Huang and C-N. Yang had found
the ground state energy and elementary excitations of the dilute, homogeneous gas of
N interacting bosons. The leading term in the ground state energy was E = ~

2

2m
4πNρa,

where a is the scattering length of the 2-body, short-range interaction potential and
ρ is the particle density. This formula was already understood by N.N. Bogolubov in
his famous 1947 paper, and even earlier by W. Lenz in 1935. LHY found several ways
to get this formula; the most important from the point of view of modern physicists
was the use of the pseudopotential, invented by Fermi to understand nuclear forces. It
replaces a hard core interaction of radius a, for example, by a delta-function of strength
a. Every mathematical physicist knows that a simple delta-function in 3D does nothing
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(as a potential in a Schrödinger equation), but it does work effectively and efficiently in
perturbation theory to imitate the effect of the hard core.

Despite the seeming correctness of this formula for the energy, a rigorous proof was
lacking. A low density Bose gas is, in several ways, more difficult to treat rigorously than
a Fermi gas. Dyson tried to find a rigorous proof and succeeded in constructing a correct
upper bound, which was far from as trivial as this might sound, but only managed to get
a lower bound that was 14 times too small.

LHY were also able to ‘derive’ the next term in the Bogolubov expansion of the
energy, ~2

2m
512
15

Nρa
√

πρa3, which measures correlations. It shows that such a dilute gas
has, surprisingly, 3 length scales, a � ρ−1/3 � 1/

√
ρa. Fermi gases, in contrast, are more

intuitive and do not have the third scale, whose presence makes it impossible to think
of the bosons as particles localized with respect to each other. To this day, this second
term has not been fully proved, although significant progress has been made recently by
A. Giuliani and R. Seiringer.

Bethe posed the problem to me of independently verifying these formulas, especially
the 4πNρa, without using the unconventional mathematics that led, nevertheless, to a
formula that everyone believed to be true. This says a lot for Bethe because while he was
a physicist’s physicist, and perhaps the best calculator in the field, he was nevertheless
interested in knowing whether there was a solid mathematical foundation for the under-
standing of basic physical phenomena. Not very many physicists then or now have this
point of view.

Why consider a hard core? Because at that time, and for many years afterward,
the only interesting Bose fluid known was liquid helium, where the density is high and
the atomic interaction is mostly hard core. Naturally, the low density theory could not
be expected to be accurate for liquid helium, but that didn’t bother most people. In a
famous 1956 paper O. Penrose and L. Onsager tried to estimate the condensate fraction
for helium and arrived at 10%, but while they never claimed that this figure was anything
more than a guess, it was widely accepted at the time as the truth. Such was the state
of physics in those days.

Although I was not able to prove the 4πNρa formula rigorouly, I did manage to
‘rederive’ it in 1963 by a different argument that operates in real space rather than in
momentum space as the Bogolubov, LHY and other derivations did. This, nevertheless,
suggested that real space was the more useful perspective, and this was born out when
Jakob Yngvason and I finally proved it in 1998. The key was to find a useful way to
‘localize’ the many body-wave functions.

Another bosonic problem that eventually succumbed to real-space localization was
the ground state energy for long-range Coulomb potentials. In 1961 L. Foldy used Bo-
golubov’s method to find the leading term in the ground state energy for high density
‘jellium’ (positive particles in a fixed, negative background), and Dyson showed rigorously
in 1967 that a 2-component mixture of positive and negative bosons would violate ‘stabil-
ity of matter’ and have an energy −CN 7/5. In 1988 J. Conlon, H-T. Yau and I managed,
finally, to verify both results, but with non-sharp constants, and finally, J. P. Solovej and
I managed to prove the conjectured sharp constants in 2001 and 2004, respectively. The
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new feature here was a kind of continuous localization called ‘sliding’. The point, again,
is that the buildup of ideas over a long period can, despite initial skepticism, eventually
lead to rigorous solutions of problems.

In this early period I was also involved with the one-dimensional Bose gas with re-
pulsive delta-function pairwise interaction. That the ground state energy and low-lying
excitations could be calculated using an ansatz that goes back to Bethe’s early days in
1931 was something I realized while trying to teach applied mathematics in the then
peaceful Sierra Leone of 1961. In 1960, M. Girardeau had shown that the spectrum of
the infinite delta-function (hard-core) gas was the same as that of the fermi gas. I was
employed by IBM at the time and W. Liniger, a numerical analyst in the Yorktown lab,
and I calculated some of the properties of this gas. No one, at the time, even remotely
thought that a 1D gas would ever be seen, but it is now something verifiable in the
laboratory. Indeed, almost all ‘real’ physicists at the time thought that one-dimensional
models were a waste of time but, as it turned out, they were very wrong.

The exercise was meant to check Bogolubov’s theory in 1D; that theory worked very
well, except for the fact that the model showed a second, unforeseen branch of the spec-
trum, which can now be seen experimentally! If there is a moral to this story it is that
exactly soluble models and exact calculations can eventually be useful, and I would en-
courage more young mathematical physicists to think in this direction. It is, however,
not enough to solve a model exactly; for the result to be useful one also has to dig out
the physical consequences of the mathematical solution. Unfortunately, this second step
is not always carried out.

Much remains to be done, such as a proof of Bose-Einstein condensation for the
homogeneous gas in the thermodynamic limit (although this was shown by Seiringer and
me for traps, in a different limit), and more insight into the time evolution of these gases,
as started by L. Erdős, B. Schlein and H-T. Yau. It is time to end this thumbnail personal
sketch, however. A proper historical account would include the work in this period of
many other mathematical physicists, which has been important for our understanding of
these highly quantum-mechanical objects. Despite what one might have thought naively,
many of the properties of Bose gases and liquids near their ground states derive from
quantum-mechanical dynamics that has no classical analogue. This is much more so
than for fermions, and therein lies their fascination.

† E.H. Lieb, R. Seiringer, J.P. Solovej and J. Yngvason, The Mathematics of the Bose
Gas and its Condensation, vol. 34, Oberwolfach Seminars Series, Birkhäuser (2005).
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Bose-Einstein condensation in cold atomic gases

by Robert Seiringer (Princeton, USA)

Robert Seiringer obtained his Ph.D. in 2000 from the Institute
for Theoretical Physics, University of Vienna under supervi-
sion of Jakob Yngvason. Since 2003 he is Assistant Profes-
sor at Princeton University, Department of Physics. Robert
Seiringer has been awarded the Henri Poincaré Prize of the
IAMP (2009) for his major contributions to the mathemati-
cal analysis of low temperature condensed matter systems, in
particular for his work on Bose condensation and the Gross-
Pitaevskii equation.

Bose-Einstein condensation (BEC) in cold atomic gases was first achieved experimentally
in 1995. [1, 2] After initial failed attempts with spin-polarized atomic hydrogen, the first
successful demonstrations of this phenomenon used gases of rubidium and sodium atoms,
respectively. Since then there has been a surge of activity in this field, with ingenious
experiments putting forth more and more astonishing results about the behavior of matter
at very cold temperatures. BEC has now been achieved by more than a dozen different
research groups working with gases of different types of atoms. Literally thousands of
scientific articles, concerning both theory and experiment, have been published in recent
years.

The theoretical investigation of BEC goes back much further, and even predates
the modern formulation of quantum mechanics. It was investigated in two papers by
Einstein [4] in 1924 and 1925, respectively, following up on a work by Bose [5] on the
derivation of Planck’s radiation law. Einstein’s result, in its modern formulation, can be
found in any textbook on quantum statistical mechanics, and was concerned with ideal,
i.e., non-interacting gases.

The understanding of BEC in the presence of interparticle interactions poses a for-
midable challenge to mathematical physics. Some progress was achieved in the last ten
years or so, and the purpose of this letter is to briefly explain what has been achieved
and how it is connected to the actual experiments on cold gases.

Much of the recent work in mathematical physics on dilute Bose gases takes as input
a beautiful paper by Lieb and Yngvason from 1998. [6] They present an elegant and
concise proof of a formula for the ground state energy that was conjectured to be true
many decades earlier, as explained by Elliott Lieb in the preceding article. It says that
for a gas with repulsive interactions at low density ρ, the leading term in the ground state
energy per particle equals

4πaρ (1)

(in units where ~ = 2m = 1, with m the mass of the particles), where a denotes the
scattering length of the interaction potential. The method of proof, based on an idea of

IAMP News Bulletin, July 2010 7



BEC in cold gases

Figure 1: Measured momentum distribution of a dilute gas of rubidium atoms at various
temperatures. [3]

Dyson [7] to soften the interaction potential at the expense of part of the kinetic energy,
paved the way for much of the subsequent rigorous work on dilute Bose gases.

The formula (1) applies to homogeneous gases. Actual experiments are done with
inhomogeneous gases in traps, and hence the natural next step would be to generalize
this formula to the inhomogeneous case. The resulting expression is known as the Gross-
Pitaevskii (GP) functional, given by

∫

R3

(

|∇φ(x)|2 + V (x)|φ(x)|2 + 4πa|φ(x)|4
)

dx (2)

with |φ(x)|2 being the density of the gas at the point x, and V (x) denoting the trap
potential. One arrives at this expression in a straightforward way assuming that (1) is
valid locally even for inhomogeneous systems. The additional gradient term in the GP
functional assures the validity even in the absence of interactions, i.e., when a = 0.

That (2) correctly describes the ground state energy of inhomogeneous, dilute Bose
gases with repulsive interactions I was able to show with Lieb and Yngvason in 2000. [8]
But what about Bose-Einstein condensation? The minimizer of the GP functional is
not only expected to describe the particle density of the gas, but should actually be the
condensate wave function. The latter is defined as the eigenfunction corresponding to
the largest eigenvalue of the reduced one-particle density matrix. In fact, the criterion
for the existence of BEC is exactly that there is such a macroscopically large eigenvalue.

The existence of BEC and the validity of the GP minimizer as the condensate wave
function was proved in a joint work with Lieb in 2002. [9] Like the Lieb/Yngvason paper
mentioned above, it is also rather short and uses as key ingredient a novel type of Poincaré
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inequality, where a small set is removed from the domain and bounds only in terms of
the volume of this set are sought. This work represents the first rigorous proof of the
existence of BEC in a continuous system with genuine interparticle interactions.

Shortly after the publication of our work on the ground state energy of inhomogeneous
Bose gases, we received a letter from Lev Pitaevskii inquiring whether we expect our result
to hold also for rotating systems, and whether our proof might generalize to this case.
Rotating condensates have actually been produced in the lab, and beautiful snapshots
showing the appearance of quantized vortices have been taken.

Figure 2: Measured particle density of a rotating Bose condensate at various angular
velocities. The black spots represent vortices. [10]

The mathematical analysis of the rotating case turns out to be much more involved.
The Hamiltonian for the system is now not real anymore, and the resulting absence of
a Perron-Frobenius argument leads to various difficulties. In particular, it turns out
that the permutation symmetry of the wave functions (as appropriate for bosons) had to
be enforced explicitly, the absolute ground state of the Hamiltonian, without symmetry
restrictions, is not bosonic for rotating systems, in general. For non-rotating systems
there is no such problem. It took quite a number of years to overcome these difficulties,
and the correctness of the GP description for rotating gases was finally proved in 2006,
again in joint work with Lieb. [11] An essential ingredient in this work was the use of
coherent states as a way of deriving a classical limit of a quantum field theory.

Rotating Bose condensates display a rich variety of phenomena, depending on the
angular velocity and the trap geometry. Giant vortices, regular vortex lattices, and a
bosonic analog of the fractional quantum Hall effect are merely examples of effects that
can occur. Although a lot of progress was made in recent years in order to understand
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these phenomena from first principles, there are still many open questions left for math-
ematical physicists to explore.

The GP description of dilute Bose gases is not restricted to equilibrium situations. In
fact, the time evolution of a Bose condensate is governed by the (time-dependent) GP
equation

i∂tφ(x, t) = −∆φ(x, t) + V (x)φ(x, t) + 8πa|φ(x, t)|2φ(x, t) (3)

That this is so is not at all obvious. A proof of this fact is actually rather involved, and
was achieved in a series of impressive papers by Erdős, Schlein and Yau published between
2006 and 2009. [12] They show that if initially the gas is condensed in a suitable sense,
it will stay condensed at later times, and the condensate wave functions evolves in time
according to (3). The importance of this result lies in the fact that many experiments on
Bose condensation are of destructive nature and take place only after the condensate has
been allowed to expand freely for some time. That the time evolution is indeed governed
by (3) ensures that properties of the gas in equilibrium in the trap can be deduced from
the resulting data.

It should be mentioned that there is a huge mathematical literature on non-linear
Schrödinger equations of the type (3), and a lot is known about properties of their solu-
tions. It is remarkable that these results are of direct relevance to the physics of quantum
many-body systems and dilute Bose gases, in particular.

So what are Bose condensates good for? Nowadays they serve as a playground for the
study of various systems of relevance in condensed matter physics. Bose condensates are
now routinely being loaded onto optical lattices, which are created by interfering laser
beams. Such systems are quite accurately described by the Bose-Hubbard model, a tight-
binding lattice model, which is the bosonic analog to the Hubbard model for fermions. It
has a rich and, from the mathematical point of view, rather unexplored phase diagram,
with Mott insulator, superfluid or even supersolid phases. The Bose-Hubbard model thus
represents a particularly worthwhile and possibly fruitful field for mathematical physicists
to explore.

Aside from being subjected to optical lattices, Bose condensates can be squeezed into
elongated traps to mimic low-dimensional systems, and manipulated in various other ways
to explore the fundamentally quantum-mechanical behavior of many-body systems at low
temperature. They are being used to create atomic lasers and are considered for a possible
realization of a quantum computer, for instance. The physics of cold gases can thus be
expected to continue to produce interesting new ideas and results about fundamental
aspects of nature, and to further challenge the mathematical physics community to derive
the necessary tools for a comprehensive understanding of these phenomena.
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[12] L. Erdős, B. Schlein, H.-T. Yau, Derivation of the Gross-Pitaevskii hierarchy for the dynam-

ics of Bose-Einstein condensate, Comm. Pure Appl. Math. 59, 1659–1741 (2006). Rigorous

Derivation of the Gross-Pitaevskii Equation, Phys. Rev. Lett. 98, 040404 (2007). Deriva-

tion of the cubic non-linear Schrödinger equation from quantum dynamics of many-body

systems, Invent. Math. 167, 515–614 (2007). Rigorous derivation of the Gross-Pitaevskii

equation with a large interaction potential, J. Amer. Math. Soc. 22 1099–1156 (2009).

IAMP News Bulletin, July 2010 11

http://www.bec.nist.gov/gallery.html
http://jila.colorado.edu/bec/hi_res_pic_album_macromedia/index.html


From condensate to “quasi-condensate”

From condensate to “quasi-condensate”

by Valentin A. Zagrebnov (Marseille, France)

The Free Bose-gas. The first mathematical attempt to under-
stand Einstein’s arguments (1925) in favour of boson conden-
sation was due to Uhlenbeck (1927), who “demonstrated” that
these arguments are inconsistent. This discouraged any inter-
est in this subject for about 10 years !
It was only when Kramers (1937) pointed out the importance
of the thermodynamic limit for these arguments and F. London
(1938) established the concept of the macroscopic occupation
of the ground-state, that Uhlenbeck (1938) withdrew his criti-
cism. In the paper with Kahn (1938) he developed an explana-
tion of the conventional ground-state Bose-Einstein condensa-
tion (BEC) for the free Bose-gas, which is nowadays accessible

to the average undergraduate student.
Much later Araki-Woods (1964), then Pulé (1972) and Lewis-Pulé (1974), developed a

beautiful mathematical theory of the free-boson infinite-volume equilibrium states and of
the corresponding representations of the canonical commutation relations: first, without
BEC, then in the presence of the condensate.
Generalised condensation. This concept, which considers BEC as the occupation of the
lower energy states instead of the ground state, was invented by Girardeau (1960) to
treat BEC in one-dimensional Bose-gas. This definition of BEC has the advantage that
it is thermodynamically stable, in contrast to BEC in the ground state. It was revived
in a remark by Casimir (1967) about a strange feature of the free gas BEC, when the
thermodynamic limit is taken via a sequence of highly anisotropic prisms. Take 3D prisms
Λ = L1 × L2 × L3 of the volume V with sides of length Lj = V αj , j = 1, 2, 3, such that
α1 ≥ α2 ≥ α3 > 0 and α1 + α2 + α3 = 1, with, e.g., periodic boundary conditions for the
single-particle Hamiltonian. Then for the Casimir prisms with α1 = 1/2, the density of
the free gas condensate is expressed by unusual formula (condensation of the type II):

ρ − ρc(β) = β−1
∑

n1∈Z

1

(2πn1)2/2 + A
,

indicating that it is spread over an infinite number of “fragments” sitting in the lowest
modes, including the condensation in the ground-state n1 = 0. Here ρc(β) is the usual free
gas critical density for temperature β−1 (for the other units we follow the same convention
as in the article by Robert Seiringer) and A = A(β, ρ) ≥ 0. For α1 < 1/2 only the zero-
mode survives in this formula and one recovers the conventional ground-state (type I)
BEC, although for α1 > 1/2 none of the levels are macroscopically occupied and the
condensate density is expressed by integral (non-extensive or the type III condensation).
The complete mathematical theory of the generalised (or “fragmented”) condensate, also
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called a “quasi-condensate”, and the above classification are due to van den Berg-Lewis-
Pulé (1984).

Mean-field models. The importance of this generalisation was demonstrated for the first
time by a rigorous analysis of various mean-field models. The first mathematical treat-
ment of the mean-field Bose-gas was given by Davies (1974). The Dublin school (Lewis et
al (1983-93)) used the theory of Large Deviations to treat “diagonal” generalizations of
this model including the Huang-Yang-Luttinger model. They also gave a rigorous treat-
ment of the Yang-Yang model by using the same methods, Dorlas et al (1984). These
models were later generalised to the full diagonal model and to include non-diagonal BCS-
type terms, Pulé et al (2007). The notion of the generalised condensate is indispensable
for this analysis.

The second critical point. It was van den Berg (1983), who first proved that the “quasi-
two” dimensional free Bose-gas in the exponentially anisotropic prisms Λ = LeαL×LeαL×
L, α > 0 (slabs), manifests a second critical density ρm with ρm − ρc = K α > 0, or a
corresponding second critical temperature Tm < Tc.
It is curious to note that there is no second critical point in the “quasi-one” dimensional
exponentially anisotropic prisms, but it does exist for the ideal Bose-gas in the exponen-
tially anisotropic “cigar”-type harmonic traps, Beau-Zagrebnov (2010).
So what happens in this “quasi-one” dimensional Bose-gas? Just below Tc a generalized
type III condensate (“quasi-condensate”) appears with density growing up to the point
Tm. For lower temperatures T < Tm the condensation starts at ground-state (type I con-
densate) and growing monotonically it absorbs “quasi-condensate”, which in turn starts
to decrease. This coexistence of two types of condensate for T < Tm lasts up to the zero
temperature, when there remains only the conventional ground-state condensate (type I),
see Figure 3. The most exciting point in this story is that the second critical point is not

Figure 3: Dotted line is density of the type III “quasi-condensate”. The brown line
indicates the type I condensate, and the blue one is a totality of two coexisting condensates
below the second critical point.
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a mathematical artifact, but it was apparently observed for the first time in experiments
with cold atomic gases in extremely elongated (“quasi-one” dimensional) traps by the
Aspect group (2003).
The condensate in a random environment. This problem was first studied by Kac and
Luttinger (1973), who looked at the perfect Bose-gas embedded into a homogeneous
non-negative random potential (repulsive impurities). The first question concerns the
definition of the condensate, the second is its dependence on the parameters of the ran-
dom potential.
The only available system for experiments at that time was a mixture of liquid 4He with
(unquenched) impurities of 3He. Notice that it was in the liquid 4He that the Bose-
Einstein condensation was observed experimentally for the first time ! Two groups:
Dubna-Obninsk (1975) and Chalk River (1976), discovered that at the temperature
T = 1, 2K about 10% of 4He atoms have momentums close to zero. It is instructive
to compare these data with Onsager-Penrose calculations quoted in the article by Elliott
Lieb. Moreover, these experiments clearly indicated that BEC and superfluidity started
at the same temperature Tλ ' 2, 17K.
The temperature Tλ is in turn a decreasing function of the 3He-impurities density. Since
the theory of this fully interacting system cannot so far be treated by the methods of
mathematical physics, the main directions of research are concentrated either around the
perfect bosons in random potentials (quenched impurities), or some interacting lattice
systems, e.g., the Bose-Hubbard model of boson glasses, Fisher et al (1989) and exactly
soluble models, Dorlas et al (2006).
For the first class of models, Kac and Luttinger predicted (1973) a striking result oppo-
site to that for the 4He-3He mixture. Their calculations show that randomness enhances
condensation and makes it possible even for one-dimensional systems. The rigorous proof
of the Kac-Luttinger conjecture including a detailed analysis of the localized versus ex-
tended condensation became available only recently, Lenoble et al (2004) and Jaeck et
al (2009), due to the concept of generalised condensation à la van den Berg-Lewis-Pulé.
For example, if a free Bose-gas manifests type I (zero-mode) BEC, then the presence of
a non-negative random potential transforms the condensation into type III.
This last result challenges the rigorous status of a very popular application in the physics
literature of the Bogoliubov approximation to random boson systems. This is mainly an
open problem, although it has been proved that localised condensation implies a gener-
alised type III condensation in the one-particle kinetic-energy states, Pulé et al (2009).
The latter opens a way to apply the recent proof of the Bogoliubov approximation by
Lieb et al (2005) to the case of generalised condensation, Jaeck et al (2010).

In conclusion I would like to quote Elliott Lieb: “Much remains to be done ... ” and
the book by André Verbeure 1. This book gives more details concerning generalised BEC
and summarizes some recent results, which are not mentioned above.

1“Many-Body Boson systems”, Springer-Verlag, Berlin (2010). In particular, readers will find there
some recent mathematical results concerning the Raman and Rayleigh super-radiant scattering on con-
densed bosons in elongated cigar-type traps. See figure on the Bulletin covered page.
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My way to quantum physics

What continues to fascinate me in Mathematical Physics?

by Simone Warzel (Munich, Germany)

I was asked to write a few words about what attracted me
to my field of research and Mathematical Physics in general.
Since I was educated as a physicist, the original motivation
to move into Mathematical Physics stems from my interest in
models in theoretical physics. However, all too often in my
physics education, I was left with a hand-waving explanation
or a mere hope that these models indeed carry the proposed
physical implications. As a student, I was then thrilled when
being introduced to works which combined physical intuition
with mathematical rigor to help a more complete understanding
emerge. That’s what made me turn to Mathematical Physics.

What I also find attractive about Mathematical Physics is
the fact that one is not bound to a particular discipline in either
Mathematics or Physics. This is true even if one sets one’s eyes

on a particular problem. Let me illustrate this, using my main field of interest: random
operators.

Here from the mathematician’s point of view, techniques from analysis and probability
or rather ergodic theory get combined for an explanation of the spectral properties of
certain self-adjoint operators with random coefficients. The most basic example of such
an operator is the Anderson Hamiltonian. It was proposed in 1958 as a basic model in
the quest for a theory of quantum transport in disordered media. Among its interesting
features is a conjectured sharp transition of the eigenstates from being localized in one
energy/disorder regime to contributing to diffusive transport in the other regime. Quite in
the spirit of phase transitions in statistical mechanics, this transition is expected to occur
only for dimensions larger than a critical one, here: d = 2. So far, only the localization
regime has been understood to quite some degree: i) complete localization for d = 1 at
any non-zero level of disorder has been established already in 1970’s using transfer matrix
methods; ii) the analogous statement for d = 2 remains an open problem; iii) localization
in general can be established for large disorder and extreme energies; iv) the fact that the
phenomenon is stable to short-range interactions in the associated multi-particle set-up
has also recently been settled. What is missing are techniques for the explanation of
the diffusive regime or the analysis of localization in the truly many-particle setup. The
latter remains an open problem even on the level of rigor of theoretical physics.

To come back to my original point of interconnectedness of areas in mathematical
physics, it is worth noting that the available proofs of localization rest on techniques,
such as the multi-scale analysis or the fractional-moment method, which either origi-
nated or have proven useful in analyzing models of statistical mechanics. The connection
to statistical mechanics becomes even more immediate in a toy model for the Anderson
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Hamiltonian, namely the supersymmetric sigma-model. Apart from this link, the field of
random operators is also intertwined with random matrix theory, which enjoys a happy
life of its own. One conjecture here is the relation between the statistics of the eigenval-
ues of Anderson-like Hamiltonians on large boxes and the nature of the spectrum of the
infinite-volume operator. In the localization regime, the process of random eigenvalues,
as seen under a natural magnification, is known to be Poisson. In the delocalization
regime, eigenvalue repulsion kicks in and one conjectures random matrix statistics.

I am very honored to share the young scientist prize of IUPAP with Rupert Frank
and Benjamin Schlein. With the former I even enjoyed collaborations. I would also like
to take the opportunity to thank all my other collaborators from which I have learned a
lot and which made Mathematical Physics even more fun.
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An interview with Dr. Akira Tonomura

Dr. Akira Tonomura

Dr. Akira Tonomura is a Fellow of Hitachi Ltd. He is a pioneer and an authority in the

field of electron holography. In particular, he is famous for the double-slit experiment with

electrons for the demonstration of particle-wave duality, the experiment for the verification

of the Aharonov-Bohm effect, and the experiment for the observations of magnetic vortex

movement in superconductors. He plays important roles of scientific administration in Japan

as a member of the Japan Academy and the Science Council of Japan. He also serves

currently as visiting professor at some universities. He was awarded the 1999 Benjamin

Franklin Medal in Physics for his contributions to the development of an electron beam and

high-resolution microscopic device as well as the Nishina Memorial Prize, the Asahi Prize,

Japan Academy Prize, Imperial Prize, etc. in Japan. His works were also duly recognized

abroad: a Foreign Associate of the National Academy of Sciences in the US, a Fellow of the

American Association for the Advancement of Science, etc.

Bulletin: The Aharonov-Bohm (AB) effect has been fascinating both mathematicians and
physicists with every interesting aspect of the effect. But, in those days when you started
several experiments on the AB effect, the effect had not yet been recognized even by many
authorities of theoretical physics, or rather, many of them thought that it was a mere
armchair phenomenon in mathematics, not real physics. So, there was a possibility that
it might be a pipe dream in mathematics. How did you come to tackle the experimental
demonstration of such an effect in the institute of Hitachi, a Japanese company?

Tonomura: Vector potentials had been considered to be merely a mathematical con-
venience without physical reality since Maxwell added it to electromagnetic equations.
The Maxwell equation appearing in his textbook2 primarily contains the vector potential.
Since the AB effect is due to the vector potential, as you said, it was not recognized. In
fact, the physicists who denied the existence of the AB effect made themselves heard,
which has given rise to much controversy. The early experiments for its verification
by physicists, which is represented by R. G. Chambers, were performed shortly after
Aharonov and Bohm’s paper was published. However, almost all protestors against the
AB effect tried to outdebate them, insisting that the phenomena observed by the experi-
menters were not caused by the AB effect. That is, they claimed that there was a leakage
of magnetic field from both ends, the north and south poles, of their solenoids with finite
size, and thus that the electron is acted in by the magnetic field leaking out. Thus, the
problem of the existence of the AB effect, that is, its reality, was still at the center of a
controversy.

We had developed an electron beam with good coherence and completed the new
technology of an electron holography by that time. I wanted to settle the controversy by
presenting reliable results with our technology, because I thought that the AB effect is a
mathematical yet important evidence for the existence of a gauge field. I wrote a letter
and sent it to Prof. C. N. Yang. In the letter I explained to him that we were planning
a perfect experiment for the verification of the AB effect, and I asked him whether it is
really important for physics. In the early of June 1981, Prof. Yang called me from the
University of Tokyo. He stayed with Prof. H. Miyazawa. He said that he would like

2A Treatise on Electricity and Magnetism (1873).
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to visit the Hitachi Central Research Laboratory (HCRL) to discuss the experiment we
planned. Actually, in that period many physicists were skeptical about the AB effect,
and, moreover, only a few Japanese physicists knew the AB effect in those days. So,
many people in Hitachi said, “Is it useful for Hitachi’s development?” “Is such an exper-
iment worth much in physics?” Thus, I had to convince people that it is worthwhile to
tackle the problem even in Hitachi. Prof. Yang’s visit to HCRL and his authorization of
our attempt helped us promote it and get up people’s drive in Hitachi. Our project was
approved by Hitachi after all, and it started. We were involved in that controversy for
about six years.

Bulletin: So, Prof. Yang was your go-to person for the project in Hitachi, right?

Tonomura: Yes. I have to mention that he also gave us several academically important
advices. In the previous experiments the leakage of magnetic field comes from both ends,
the north and south poles, of the solenoid. To avoid such a leakage, we reached the idea
that we should connect both ends, namely, replace the solenoid with a toroidal magnet
(i.e., donut-shaped magnet). It required of us the cutting-edge technology of microfab-
rication. So, I talked to some people with the microfabrication technology in Hitachi
over to our project. They kindly accepted to take on the extensive work after several
negotiations. Although we had suffered many setbacks, we finally succeeded in creating
a leak-free, toroidal magnet. Thus, we could observe the AB effect using electron holog-
raphy (Phys. Rev. Lett. 48 1443 (1982)). But some physicists made a pointed criticism:
That is, although there is no end of the toroidal magnet, the electron beam may still
touch its magnetic field. So we required a more perfect experiment to implement the
idealized situation of the AB effect. Prof. Yang gave us a comment on what we should
do in the 1st “International Symposium on Foundations of Quantum Mechanics in the
Light of New Technology (ISQM).” Hitachi together with the Physical Society of Japan
and the Japan Society of Applied Physics have periodically organized ISQM. Prof. Yang
advised us that we should cover the donut-shaped magnet with a superconductor, and he
predicted that we must observe the quantization of flux, a fundamental phenomenon in
the theory of superconducting, in the AB effect. Namely, the magnetic field is perfectly
confined in the toroidal magnet because of the Meissner effect. If we observe the flux
quantization as an interference shift, we can conclude that the shift is due to the vector
potential. That is the very effect theoretically predicted by Aharonov and Bohm. We,
moreover, covered it with copper so that the electron cannot enter it. It was very difficult
to create a sample for the experiment that satisfied all of our desired conditions. We had
to create about a hundred thousand samples. Eventually, we succeeded in creating such
samples and observing the AB effect under perfect conditions (Phys. Rev. Lett. 56 792
(1986)).

The experimental demonstration of the AB effect
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I think the ruling passion of all physicists involved in the project for the AB effect won
the hearts and minds of the people in Hitachi, which took our project to great success.
Also, I owe it to Prof. Yang that we could continue fundamental research on physics in
Hitachi.

Bulletin: The AB effect is a subject of interest to both mathematicians and physicists in
the light of fundamental theory. It is also emerging as a principle for several devices of
nanotechnology. How do you feel about this situation?

Tonomura: The AB effect tells us about foundational part of physics such as gauge
theory. I think mathematics and physics are quite involved with each other at the foun-
dation of physics, and, moreover, possible principles for devices show up frequently in
such a fundamental phenomenon. In the 1st ISQM the following question came up: Does
the electron in a solid exhibit any interference phenomenon? Then, does the AB effect
take place in the solid? Y. Imry et al., the IBM researchers, were at the center of a
heated argument in that ISQM. R. A. Web , also an IBM researcher, had experimentally
demonstrated a positive answer shortly after the argument, and he talked about it at
the 2nd ISQM. Some results on the AB effect in carbon-nanotubes were reported there,
too. Their results say that the AB effect can become a principle of a possible device of
nanotechnology and expand the possibility of such a device.

Bulletin: Yes. I agree with you. As a current topic, for instance, I take an interest in
the result about the absence of the AB effect in the ring which consists of the two Bose-
Einstein condensate Y-junctions. I wonder whether there is an interaction between the
AB phase and the phase coming from a boundary condition.

Tonomura: It is interesting if the conversation of mathematics and physics leads to the
development of new devices. In that case we may have to seek out someone like Prof.
Yang. He can understand both mathematics and physics well, and is good at explaining
the essence of physics to a mathematician, for instance to you, as well as to physicists.
If we were C. N. Yang, we could play such a role. But, unfortunately, we are not. It is
difficult to expect more men of his timber. Thus, it is important that we, physicists and
mathematicians, often have heated discussions on common subjects that we are interested
in.

Bulletin: I remember that Prof. Yang told us that he learned some mathematics from
Prof. K. Kodaira while three Asians, Prof. Kodaira, Prof. S. Tomonaga, and Prof.
Yang, stayed in the Institute for Advanced Study, Princeton. He said that they always
enjoy many conversations and discussions there. By the way, besides the demonstration
of the AB effect, your experiment on it also shows that the unit of fluxon (i.e., flux quan-
tum) is half of the London unit3. It means that you had obtained a technique to observe
the fluxon of a superconductor. So, did you begin the series of the experiments of the
observation of magnetic vortex movement in superconductors?

3The shift of the interference pattern in the experimental demonstration of the AB effect tells us this
fact. See also B. S. Deaver and W. M. Fairbank, Phys. Rev. Lett. 7, 43 (1961).
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Tonomura: Yes. There is a problem of flux pinning in the theory of high-temperature
superconducting. I am interested in it. We have to solve the problem practically to use
high-temperature superconductors as an application. Namely, when an electric current
goes through the material of a high-temperature superconductor while still in a super-
conducting state, many fluxons are formed in it, and they undergo motion. The motion
generates heat in the material and breaks the superconducting state. There is the no-
tion of pinning to prevent the fluxon’s motion. Thus, it is important to understand the
mechanism of the fluxon’s motion and the mechanism of pinning. By using the 1-MV (1
million volt) holography electron microscope, we could become the first in the world to
succeed in visualizing the fluxon dynamics in a high-temperature superconductor (Nature
412 620 (2001)).

1-MV holography electron microscope Formation of holography electron microscope

Bulletin: One million volts? That many!

Tonomura: We need it to obtain bright electron beams. I would like to point out that
the electron gun (i.e., electron source) of a holography electron microscope has to fire
many electrons, namely, it makes a high electric current density, to obtain the brightness
of the electron beams.

Bulletin: Sounds like an accelerator. To observe an object you put it between the electron
gun and the electron biprism. Firing electrons to the object from the electron gun, you
get some data as a hologram on the detector. Thus, to get the exact image of the object,
your holography electron microscope needs the solution of an inverse problem with respect
to phase, right? If the electron in the 1-MV holography electron microscope has very high
energy, then the electron has to be considered a relativistic particle, doesn’t it? Is there
any theory to analyze the image of the object for the holography electron microscope?

Tonomura: Unfortunately, I don’t think there is such a strict theory to the best of my
knowledge. I think the high-voltage holography electron microscopes are not so familiar
to theorists that they are motivated to find such a theory, because not so many people
can construct the high-voltage holography electron microscopes. We may expect some
collaboration of applied mathematics and technology in this field.
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Bulletin: Meanwhile, in the 2002 poll the readers of Physics World4 selected your double-
slit experiment with electrons as the most beautiful experiment in the history of science.
I’ve thought that you would have another goal from the demonstration in the double-slit
experiment. Can I ask about that?

Tonomura: In fact, I hesitated to submit the result to a journal because I felt it was just
a demonstration of the interference experiment with electrons proposed by R. Feynman5.
But Prof. H. Ezawa talked me into writing the paper on the result. With his collaboration
the result led to the publication (Amer. J. Phys. 57 117 (1989)). Actually, there was
an experiment stimulated by Hanbury Brown and Twiss. Their original experiment, of
course, was for photons and they discovered the photon bunching in light emitted by a
chaotic source, which is called the Hanbury Brown-Twiss effect. This property comes
from the Bose nature of photons. I wanted to observe the anti-bunching of electrons,
that is, I wanted to study an electron complement to the experiment of Hanbury Brown
and Twiss for photons. Interestingly, we could sometimes observe the phenomena which
show the bunching property for electrons.

Bulletin: Does it mean that two electrons make a boson? I wonder what is the force to
connect them, but it reminds me somewhat of the d-pairing, caused by the exchange of
spin fluctuation, of a conventional superconductor. What is the progress on it?

Tonomura: That is in the pipeline. It depends on the budget we can get.

Double-slit experiment

IAMP Editorial Board would like to thank Dr. Tonomura for providing the photos with
their kind permission.

The interview was taken in Japanese and translated into English by
Masao Hirokawa (Okayama, Japan)

4a British science journal.
5in §1-4 of “The Feynman Lectures on Physics, Vol. 3,” Addison-Wesley (1965).
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News from the IAMP Executive Committee

New individual members

IAMP welcomes the following new members

1. Jean-Marie Barbaroux, Department Mathematiques, Centre de Physique Theo-
rique, Luminy, Marseille, France

2. Eyal Lubetzky, Microsoft Research, Redmond WA , USA

3. Hatem Najar, Departement de Mathematiques, Universite de Kairouan, Kairouan,
Tunisia

4. Alessandro Pizzo, Department of Mathematics, University of California, Davis,
USA

5. Sylvia Serfaty, Laboratoire Jacques-Louis Lions, Universite Pierre et Marie Curie,
Paris, France and Courant Institute, New York, USA

6. Mikhail Sodin, School of Mathematics, Tel Aviv University, Tel Aviv, Israel

7. Rafael Tiedra, Facultad de Matematicas Pontificia Universidad Catolica de Chile,
Santiago, Chile

New associate members

IAMP welcomes a new associate member:

• The Center for Mathematics and Theoretical Physics (CMTP)
Link: http://cmtp.uniroma2.it/

Open positions

• Deadline October 31, 2010: The research group Mathematical Theory of Quantum
and Classical Magnetic Systems of the Pontificia Universidad Catolica de Chile
(PUC) invites applications for a one-year postdoctoral fellowship beginning March
15, 2011. Applicants should have a recent Ph.D. in mathematics or physics and
should work in the group’s research area (quantum mechanics, spectral analysis,
scattering theory, functional analysis). The postdoctoral fellow is expected to in-
teract with group members and should therefore be able to communicate in ei-
ther English, Spanish or French. The fellowship involves no teaching. The annual
stipend of CLP18′000′000( US 33’500) is tax-free but compulsory Chilean medical
insurance is required. While this is a one-year fellowship, the successful applicant
may re-apply for a similar fellowship in 2012 on an equal basis with other applicants.
The PUC is a leading Chilean research university with strong doctoral programs
in mathematics and physics. A group headed by R. Benguria at PUC has been

22 IAMP News Bulletin, July 2010

http://cmtp.uniroma2.it/


News from the IAMP Executive Committee

funded by the Chilean government’s Iniciativa Cientifica Milenio for a 3-year re-
newable period beginning in 2010 to conduct research in the Mathematical Theory
of Quantum and Classical Magnetic

Other group members are O. Bourget (PUC), E. Friedman (U. de Chile), M. Man-
toiu (U. de Chile), G. Raikov (PUC) and R. Tiedra (PUC).

Applicants should arrange that a curriculum vitae, research statement and two
letters evaluating the applicant’s research be e-mailed to Rafael Benguria at

rbenguri@fis.puc.cl

In addition, applicants are encouraged to contact relevant group members directly.
For full consideration, complete application materials in English, Spanish or French
must arrive by October 31, 2010. Review of applications will begin on October 31,
2010.

Recent conference announcements

With support from IAMP:

• Feb 14–19, 2011, ”School and Workshop on Mathematical Methods in Quantum
Mechanics”, Bressanone, Italy

• Sep 28–Oct 1, 2010, Quantum Field Theory and Gravity, Regensburg, Germany
LINK: http://www.uni-regensburg.de/qft2010

Other announcements:

• Sep 22–25, 2010, Seminal Interactions between Mathematics and Physics, Rome,
Italy
LINK: http://cmtp.uniroma2.it/10SIMP/

• Sep 21–25, 2010, Geometry and Physics in Cracow, Jagiellonian University, Krakow,
Poland
LINK: http://th-www.if.uj.edu.pl/∼krageomp/GPC/GeomPhysCracow.html

• Sep 20–24, 2010, New Approaches in Many-Electron Theory: Basic Physical Prin-
ciples and Mathematical Rigor, Mainz, Germany.
LINK: http://www.mpip-mainz.mpg.de/theory/events/namet2010

Jan Philip Solovej (IAMP Secretary)
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New associated member

Center for Mathematics and Theoretical Physics

The Center for Mathematics and Theoretical Physics (CMTP), dedicated to Tullio Levi
Civita, has been founded on November 17th 2009 by a group of researchers from the three
Roman Universities: Sapienza, Tor Vergata and Roma Tre.

The Center aims at promoting cross fertilization of Mathematics and Theoretical
Physics at the highest level, by fostering creative interactions of leading experts from both
subjects and by taking advantage of the high quality and wide spectrum of research in
Mathematical Physics presently carried on in Roma: this ranges from statistical mechan-
ics to disordered and complex systems, condensed matter theory, quantum field theory,
operator algebras, algebraic geometry, differential geometry and dynamical systems.

The Center promotes scientific research by organizing workshops, congresses, periods
of thematic research, invitations to scientists and by assigning study grants. The Center
wants to attract to Roma foreign scientists of great international prestige, even with
part-time positions, and young talented foreigners by offering a natural place for scientific
education and a base of cultural interchange with other scientific centers abroad.

The Center is particularly pleased to join IAMP as an associate member and we are
looking forward to start a close and fruitful collaborations in promoting mathematical
physics. IAMP Members who are interested in participating in our activities are invited
to visit our website at http://cmtp.uniroma2.it/ .

The Director: Roberto Longo.

The Vice-directors: Alberto De Sole and Alessandro Giuliani.

The Scientific Board: Massimo Bianchi, Corrado de Concini, Sergio Doplicher, Gio-
vanni Gallavotti, Francesco Guerra, Giovanni Jona-Lasinio, Carlangelo Liverani,
Roberto Longo, Rossana Marra, Fabio Martinelli, Vieri Mastropietro, Giorgio Pa-
risi, Paolo Piazza, Errico Presutti, Claudio Procesi, John Roberts.

Communicated by
Roberto Longo

Alberto De Sole

Alessandro Giuliani

24 IAMP News Bulletin, July 2010

http://cmtp.uniroma2.it/


Obituary

Vladimir Igorevich Arnold

June 12, 1937 (Odessa) - June 3, 2010 (Paris)

On the 3rd of June, 2010 one of the greatest mathematicians of our time, Vladimir Arnold,
died in Paris. This was absolutely shocking news for all his friends and colleagues, the
more since he enjoyed enviable health and recent tests did not show anything dangerous.
Arnold’s heritage includes many remarkable results in Mathematical Physics. We give
below only a brief list of them.

In the famous KAM-theory the letters K and A stand for Kolmogorov and Arnold,
while the letter M stands for Jürgen Moser. Arnold’s advisor Andrey Kolmogorov made
the first fundamental steps and outlined the whole program. Arnold found many impor-
tant cases when the theory works, and proved the theorem in the analytic setting. Moser
proposed complete proofs of many results and described the case of finite smoothness.
Applications of the KAM theory considered by Arnold included the existence of magnetic
surfaces, the theory of adiabatic invariants, etc.

Arnold’s diffusion started with his construction of a very beautiful example of a one-
parameter family of Hamiltonian systems to which KAM-theory can be applied, but the
system is unstable and has trajectories, which escape to infinity.

The Arnold-Liouville theorem states that in Hamiltonian systems with n degrees of
freedom invariant submanifolds of dynamics consist of tori or multi-dimensional cylinders.

The Arnold tongues appear, in particular, in families of one-dimensional diffeomor-
phisms of the circle as a fractal set of parameters, for which the limiting maps have
irrational rotation numbers. Later it was shown that the fractal has a non-trivial Haus-
dorff dimension.

In fluid dynamics Arnold described the Euler equation for an ideal fluid as the equa-
tion of geodesics on the group of volume-preserving diffeomorphisms. This allowed him
to apply geometric and group-theoretical methods to the study of this equation. In par-
ticular, he developed what is now called “Arnold’s stability method” for fluid flows. He
conjectured that the ABC (Arnold-Beltrami-Childress) flows, which are steady-state so-
lutions of the incompressible Euler equation, have chaotic streamlines, leading to a kind
of Lagrangian turbulence and favoring the growth of a magnetic field when the flow is
conducting. Arnold and collaborators got involved in advanced numerical experimenta-
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tion with such flows. He also introduced topological methods in hydrodynamics, e.g.,
Arnold’s asymptotic Hopf invariant.

Arnold was a founder of symplectic topology, which is a far-reaching generalization of
the geometric Poincaré theorem in classical mechanics. He developed the theory of fronts
and caustics, singularity theory, and several other domains.

Vladimir Arnold wrote many remarkable textbooks and monographs, and some of
them, like his undergraduate textbooks “Ordinary differential equations” and “Mathe-
matical methods of classical mechanics”, became modern classics, and an integral part
of mathematical education around the world. Arnold also left behind a brilliant school
of mathematicians, many of whom continue to work in directions initiated by him.

Arnold influenced mathematical physics in many ways. His impact keeps inspiring
many of us in our research, which is the best reminder of Arnold’s remarkable heritage
and personality.

The editors
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