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Microscopic Origins of Macroscopic Behavior

Microscopic Origins of Macroscopic Behavior

by JOEL LEBOWITZ (Rutgers)

This article is mostly based on a talk I gave at the March 2021
meeting (virtual) of the American Physical Society on the occasion
of receiving the Dannie Heineman prize for Mathematical Physics
from the American Institute of Physics and the American Physical
Society. I am greatly indebted to many colleagues for the results
leading to this award. To name them all would take up all the space
allotted to this article. (I have had more than 200 collaborators
so far), I will therefore mention just a few: Michael Aizenman,
Bernard Derrida, Shelly Goldstein, Elliott Lieb, Oliver Penrose,
Errico Presutti, Gene Speer and Herbert Spohn. I am grateful to
all of my collaborators, listed and unlisted.
I would also like to acknowledge here long time support form the
AFOSR and the NSF.

Introduction
Let me begin by quoting Freeman Dyson, an earlier recipient of this prize, about his definition
of mathematical physics:

“Mathematical physics is the discipline of people who try to reach a deep under-
standing of physical phenomena by following the rigorous style and method of
mathematics.”

— Freeman Dyson, From Eros to Gaia, p 164-165

Freeman was a good friend and this talk is dedicated to his memory, as well as to the memory
of my teachers Melba Phillips and Peter Bergmann.

My own area of mathematical physics is statistical mechanics, which is concerned with the
microscopic origin of macroscopic behavior. Since our mathematical abilities for dealing with
strongly interacting many particle systems are quite limited it is fortunate that many striking
features of macroscopic systems can be obtained from simplified microscopic models.

We therefore often take as our lowest level starting point an idealized description of atoms.
As put by Feynman [6]:

“If in some cataclysm all of scientific knowledge was to be destroyed, . . . , what
statement would contain the most information in the fewest words? I believe it is
. . . that all things are made of atoms — little particles that move around in perpetual
motion, attracting each other when they are a little distance apart, but repelling
upon being squeezed into one another.”
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Microscopic Origins of Macroscopic Behavior

Unfortunately even such idealized systems are too difficult to deal with in any detail. In
fact many details would just be confusing. I will therefore focus on describing, in a qualitative
way, the microscopic origin of those behaviors which are (almost) always observed in isolated
macroscopic systems both in equilibrium and out of it. I will relate this to the fact that this
behavior is typical for systems represented by the usual Gibbs measures or those derived from
them. These take small phase space volume to indicate small probability. I will not try to justify
this here.

This means that for equilibrium macroscopic systems these behaviors occur for an over-
whelming majority of the microstates in the micro-canonical ensemble, i.e. they are typical. In
fact, the fraction of systems with noticeable macroscopic deviations from the average behavior,
computed in such an ensemble, is exponentially small in the number of degrees of freedom of
the system: the functions on the phase space which correspond to such typical behavior will be
described later.

An analogous statement holds for the (exponentially small) subsets of the micro-canonical
ensemble which describe systems in nonequilibrium macrostates (to be defined below). It thus
includes the time asymmetric approach to equilibrium, encoded in the second law and observed
in individual macroscopic systems. Once one accepts the applicability of these measures to
physical systems the observed behavior does not require explanations based on ergodicity, time
averaging, or subjective information theory.

This property of typicality of behavior predicted by the measures used to represent macro-
scopic systems is true both classically and quantum mechanically. It explains why these en-
sembles can be used to predict the observed behavior of individual macroscopic systems and
not just some average behavior.

I will begin with classical systems where the situation is easier to visualize.

Classical Systems
In classical mechanics, the microstate of a system of N particles confined to a region V in Rd

is a point X in the 2dN -dimensional phase space,

X = (~r1, ~p1, . . . , ~rN , ~pN), ~ri ∈ V ⊂ Rd, ~pi ∈ Rd (1)

Its time evolution is given by a Hamiltonian H(X) which conserves energy, so X(t) will be
confined to ΓE , a thin shell surrounding the energy surface H(X) = E. A macroscopic system
is one with “very large” N , say N & 1020.

Macrostates
To describe the macroscopic state of such a system of N particles in a box V , we make use of
a much cruder description than that provided by the microstate X . We shall denote by M such
a macroscopic description: M(X) is the macrostate of the system in the microstate X . As an
example we may divide V into K cells, where K is large but still K � N , and specify the
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Figure 1: Schematic Picture of the decomposition of ΓE .

number of particles, the momentum and the amount of energy in each cell, with some tolerance.
Clearly there are many X’s (in fact a continuum) which correspond to the same M . Let ΓM
be the region in ΓE consisting of all microstates X corresponding to a given macrostate M and
denote by |ΓM | its Liouville volume.

It can be proven [14] that, generally, that in every ΓE of a macroscopic system there is one
region ΓM which has most of the volume of ΓE . This is called the equilibrium macrostate Meq,

|ΓMeq|
|ΓE|

= 1− ε (2)

with ε � 1. When M(X) specifies a nonequilibrium state, |ΓM | is much smaller. Thus for a
gas consisting of N particles in a volume V the ratio of |ΓM |, the volume of a macrostate M in
which all the particles are in the left half of the box, and |ΓMeq|, the volume of the macrostate
Meq in which there are (1

2
± 10−10)N particles in the left half of the box, is of order 2−N ;

see Figure 1. The second picture is slightly more faithful. Neither shows the topology or
differences in relative sizes of the different ΓM ’s. In general, the closer M is to Meq the larger
ΓM .

A system is then in macroscopic thermal equilibrium iff X ∈ ΓMeq .
Relevant properties of macroscopic systems depend only on sums over the entire system of

functions which depend only on the coordinates and momenta of a few particles. The values of
the sums, suitably scaled with N , are approximately the same for almost all X ∈ ΓMeq , hence
they are typical and observed for (almost) all systems in equilibrium. In fact since |ΓMeq | ∼
|ΓE| they are also typical of X ∈ ΓE .

This justifies the use of the microcanonical ensemble to compute relevant properties of an
equilibrium system: independent of whether or not the dynamics is ergodic in a mathematical
sense.
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Nonequilibrium States
Thus, most microstates in ΓE of a macroscopic system correspond to the system being in equi-
librium. A similar statement is true for most wave functions, in fact also for most energy
eigenstates, in HE , the energy shell of the Hilbert space: see later. Fortunately there are also
microstates which correspond to macroscopic systems which are out of equilibrium (or we
would not be here).

Given an X(t0) in such a ΓM , M 6= Meq, at an “initial” time t0, we would like to know how
the properties of a macroscopic system, isolated for t > t0, change with time.

Approach to Equilibrium
Boltzmann (also Maxwell, Kelvin, . . . ) argued that given the disparity in the sizes of the ΓM
corresponding to the various macrostates, the evolution of a “typical” microstate X , specified
to be at t = t0 in the phase space region ΓM , will be such that |ΓM(X(t))| will not decrease (on
a macroscopic scale) for t > t0. In fact for any ΓM the relative volume of the set of microstates
X ∈ ΓM for which this is false over some time period τ during which the macrostate undergoes
a macroscopically noticeable change, but not longer than the age of the universe, goes to zero
exponentially in the number of atoms in the system. This explains and describes the evolution
towards equillibrium of macroscopic systems which start in the macrostate ΓM , M 6= Meq, and
are kept (effectively) isolated afterwards.

Boltzmann’s Entropy
To make a connection with the Second Law, Boltzmann defined the (Boltzmann) entropy of a
macroscopic system in a microstate X as

SB(X) = log |ΓM(X)| = SB(M). (3)

Boltzmann then showed that the Clausius thermodynamic entropy of a gas in equilibrium is
equal to log |ΓE| ∼ log |ΓMeq|.

The above heuristic argument, based on relative phase space volume, is the correct expla-
nation for the behavior typically observed in actual macroscopic systems. It is, however, very
far from a mathematical theorem and contains no quantitative information about time scales. A
desirable result would be the rigorous derivation from the microscopic dynamics of the kinetic
and hydrodynamic equations commonly used to describe the time asymmetric, entropy increas-
ing, observed behavior of macroscopic systems out of equilibrium. This has been achieved so
far only for the Boltzmann equation for dilute gases. This was done rigorously (in appropriate
limits) by Oscar Lanford in 1975. (I will not discuss derivations which include some external
randomness in the dynamics by the Varadhan school. I will also not discuss the derivation of
a diffusion equation for non-interacting particles moving among Sinai billiards. Those cases
show what we could do if only our mathematics was better.)
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The Boltzmann Equation for Dilute Gases
Following Boltzmann, we refine the description of a macrostateM by noting that the microstate
X = {ri,vi}, i = 1, . . . , N , can be considered as a set of N points in six dimensional one
particle space. We then divide up this one particle space into J cells ∆α, centered on (rα,vα),
of volume |∆α|. A macrostate Mf (X) can then be specified by a distribution f(x, v) in the
one-particle space such that the fraction of particles in each ∆α, is given by

Nα/N ∼=
ˆ

∆α

dxdv f(x,v). (4)

Boltzmann then used his deep physical intuition (and hints from Maxwell) to derive his
eponymous equation for the time evolution of the macrostate Mf (X(t)) given by f(x,v, t). I
will not reproduce this equation here as this can be found in all textbooks on kinetic theory, c.f.
[4]. The reasoning behind it is carefully explained in Lanford’s beautiful non-technical article
[15], one of the best mathematical-physics articles I have ever read. I strongly recommend it.

I will now give a bird’s eye view of what I think is the essence of that article:
Let f0(x,v),x ∈ V ⊂ R3,v ∈ R3, be a smooth function of integral one. Then consider

a gas consisting of N spheres of diameter d in V . Keeping V fixed consider now a sequence
of states with different particle numbers, N → ∞, d → 0, such that Nd2 → b > 0, while
Nd3 → 0. This is called the Boltzmann-Grad (BG) limit. Consider now all the phase points
XN of this gas such that the fraction of particles in ∆α, satisfies Nα/N ∼=

´
∆α
f0(x,v)dxdv

with,

lim
BG

Nα/N =

ˆ
∆α

f0(x,v)dxdv (5)

The system with N particles evolves according to Hamiltonian dynamics for elastic collisions
going from XN to XN(t), t > 0. Lanford’s theorem then says:

There exists a τ > 0 such that for t < τ the Nα(t) corresponding to asymptotically almost
all such XN(t) satisfy

lim
BG

Nα(t)

N
=

ˆ
∆α

f(x,v, t)dxdv (6)

where f(x,v, t) evolves according to the Boltzmann equation with initial condition f0. Here
again almost all is with respect to the relative phase space volume. (6) holds for all reasonable
sets of ∆α’s.

The time τ for which Lanford’s theorem holds is about one fifth of the mean free time
between collisions, but that is a purely technical problem. This time is long enough for the
Boltzmann entropy per particle of the macrostate Mf to increase by a finite amount.

The Boltzmann entropy of the macrostate Mf , associated with the distribution f is defined
as in (3),

SB(f) = SB(Mf ) = log |ΓMf
| (7)
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where |ΓMf
| is the phase space volume corresponding to Mf . SB(f) was actually computed by

Boltzmann. He showed that, up to constants, this is given for a dilute gas, by

1

N
SB(f) = −

ˆ
V

dx

ˆ
R3

dv f(x,v) log f(x,v) (8)

This agrees with the Gibbs-Shannon entropy per particle for a system in a product measure,
with each particle having distribution f(x,v), but is conceptually not the same at all (see be-
low).

The maximum of SB(f) over all f with a given energy, which is here just the kinetic energy,
is given by the Maxwell distribution

feq =
N

|V |(2πkT/m)−3/2 exp[−mv2/2kT ] (9)

where kT = 2/3(E/N).
In this case

1

N
SB(feq) =

3

2
log T − log

N

|V | + Const. (10)

the same as the Clausius entropy for a dilute gas.
When f 6= feq then f and consequently SB(f) will change in time.
The second law, now says that for typical X , fXt(x,v) = f(x,v, t) = ft has to be such

that SB(ft) > SB(ft′), for t > t′.
This is exactly what happens for a dilute gas described by the Boltzmann equation.

d

d t
SB(ft) > 0, Boltzmann’sH-theorem (11)

As put by Boltzmann [3]:

“In one respect we have even generalized the entropy principle here, in that we
have been able to define the entropy in a gas that is not in a stationary state.”

More General Hydrodynamic Equations
Suppose, more generally, that the time evolution of the macrostate M , given by M(X(t)) =
Mt, effectively satisfies an autonomous deterministic time asymmetric equation, such as the
Navier-Stokes equation or the heat equation or the Boltzmann equation just discussed.

Such an equation means that if Mt1 → Mt2 , for t2 > t1, and Mt2 → Mt3 , for t3 >
t2, then the microscopic dynamics Tt carries ΓMt1

inside ΓMt2
, i.e. Tt2−t1ΓMt1

⊂ ΓMt2
and

Tt3−t2ΓMt2
⊂ ΓMt3

, with negligible error. Put otherwise a typical phase point in ΓMt1
= ΓM1

will go to ΓM2 and then to ΓM3 , i.e. Tt3−t1ΓM1 ⊂ ΓM3 .
The fact that phase space volume is conserved by the Hamiltonian time evolution implies

that |ΓM1| 6 |ΓM2| 6 |ΓM3|, and thus that SB(M3) > SB(M2) > SB(M1). A deterministic
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Figure 2: Time evolution of a macrostate

macroscopic equations, for increasing time, then has to satisfy the inequality
d
dt
SB(Mt) > 0, [10, 18].

A crucial point here is that the phase points in the region in Γ2 coming from Γ1 behave,
forward in time, as microstates typical of Γ2. They are, however, very atypical backwards in
time: if we reverse all the velocities in Γ2, then at a later time, t′ = t2 + (t2 − t1) all of the
points initially in ΓM1 will again be in ΓM1 (with their velocities reversed) a smaller region than
ΓM2 . (The same is true for any sequence of positive times.)

The reason for this asymmetry in typical behaviors is due to initial conditions. That is, when
nature or the experimentalist who is part of nature, starts out with a nonequilibrium system in
an initial state X ∈ ΓM we can assume that X is typical of ΓM , and continues to be so in the
forward time direction.

But how did all this get started? In the Lanford derivation reversing the velocities at some
t < τ violates the assumptions on the initial conditions required for the derivation of the
Boltzmann equation. But what about real life situations? Somewhat surprisingly, if one thinks
about it, one has to go back to the very beginning of the world we live in. This was already
fully understood by Boltzmann and others as the quotes below show.

Initial Conditions

“From the fact that the differential equations of mechanics are left unchanged by
reversing the sign of time without changing anything else, Herr Ostwald concludes
that the mechanical view of the world cannot explain why natural processes always
run preferentially in a definite direction. But such a view appears to me to over-
look that mechanical events are determined not only by differential equations,
but also by initial conditions. In direct contrast to Herr Ostwald I have called it
one of the most brilliant confirmations of the mechanical view of Nature that it pro-
vides an extraordinarily good picture of the dissipation of energy, as long as one
assumes that the world began in an initial state satisfying certain conditions.
I have called this state an improbable state.”

— L. Boltzmann [2]
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“It is necessary to add to the physical laws the hypothesis that, in the past the
universe was more ordered in the technical sense, [i.e. low SB] than it is today
. . . to make an understanding of irreversibility.”

— R.P. Feynman [7]

Figure 3: “Creation of the universe: a fanciful description! The Creator’s pin has to find a tiny
box, just 1 part in 1010123 of the entire phase-space volume, in order to create a universe with
as special a Big Bang as we actually find.” from R. Penrose, The Emperor’s New Mind [19]

The “tiny box” in Fig. 3 is a macrostate with low SB. N.B. It is not necessary to select
a particular microstate. Almost all microstates in a low-entropy macrostate will behave in a
similar way.

It may be relevant to mention here a question I was asked during a talk I gave on the subject:
Q: What does the initial state of the universe have to do with the fact that when I put my sugar
cube in my tea it dissolves irreversibly? A: Nothing directly but the fact that you, the sugar
cube and the tea are all here is a consequence of the initial low entropy state of the universe.

Boltzmann vs. Gibbs Entropies
Given an ensemble (probability) density µ(X), the Gibbs-Shannon entropy is given by

SG ≡ −k
ˆ

Γ

µ log µ dX. (12)

Clearly if µ = µ̃M , where

µ̃M =

{
|ΓM |−1, if X ∈ ΓM ;

0, otherwise
(13)

then

SG(µ̃M) = k log |ΓM | = SB(M). (14)
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This is essentially the case for the microcanonical ensemble and thus the Gibbs and Boltzmann
entropies are equal for equilibrium systems.

However SG(µ) does not change in time for isolated systems and therefore is “useless” for
such systems not in equilibrium, while SB(M(X)) captures the essence of typical macroscopic
behavior.

Quantum Systems
Let me turn now to quantum systems.

I will take the microstate of a system to be its wave function ψ ∈HE , where HE is a shell
in Hilbert space of thickness ∆E, i.e. ψ is a linear combination of energy eigenfunctions in the
range (E,E + ∆E), ∆E � E but very large compared to the spacing between levels.

This is not perfect (problems with Schrödinger’s Cat) but it will have to do for the present
(see below).

The question then is which ψ correspond to the system being in macroscopic thermal equi-
librium (MATE), i.e. what is the analog of a classical microstate X lying in ΓMeq .

Following von Neumann (Chapter 5 of [17]), we take the macro-observablesM to commute
with each other. We assume that this can be achieved by suitably “rounding off”, i.e. coarse-
graining, the operators representing the macro-observables.

The coarse-grained energy operator commutes with the other coarse-grained macro-observables.
Thus all M ’s can be regarded as operators on HE . Their joint spectral decomposition defines
an orthogonal decomposition

HE =
⊕
ν

Hν , (15)

The subspaces Hν (“macro spaces”), the joint eigenspaces of the macro-observables, cor-
respond to the different macro states. This corresponds to the division of the classical energy
shell ΓE into disjoint regions ΓM .

A system is in a macrostate Mν if its wave function ψ is “close” to Hν , i.e. 〈ψ|Pν |ψ〉 >
1−δ, δ � 1, with Pν being the projection to Hν . As noted earlier due to the Schrödinger’s Cat
problem there will be ψ which are a superposition of ψ’s in different macrostates. To remedy
this one has to go beyond the Copenhagen interpretation of the wave function being a complete
description, c.f. [1, 8]. For the present let me say that I would interpret such ψ’s as giving
probabilities of being in different macrostates.

The “volume” of each macro space Hν is its dimension dν .
As in the classical case, it is generally true that one of the Hν , denoted Heq, has most of

the dimensions of HE , i.e.,

dim Heq

dim HE

= 1− ε (16)

with ε� 1.
A macroscopic system is in MATE if

〈ψ|Pνeq|ψ〉 > 1− δ. (17)
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Figure 4: Boltzmann’s grave in Zentralfriedhof, Vienna, with bust and entropy formula.
Credit: Daderot at English Wikipedia, CC BY-SA 3.0 , via Wikimedia Commons
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The Boltzmann entropy SB(ψ) of a system in a macrostate M is then given by the log of
the dimension of the macro space Hν ; SB(Mν) = log dν : dν is the quantum analogue of |ΓMν |.

Most everything we said about isolated classical macroscopic systems then also holds for
quantum systems. In particular for ε� δ, most pure states in HE are in MATE.

When I say “for most ψ”, I mean that ψ is typical with respect to a uniform measure on the
unit sphere in HE . This measure on “wave functions” was considered already by Schrödinger
and particularly Felix Bloch [11]. It yields the microcanonical measure ρmc but goes beyond it.

The Boltzmann argument for increase in entropy of isolated macroscopic systems out of
equilibrium is then similar to that in the classical case [13]. Unlike classical systems however,
where any subsystem of a system in a pure state is also in a pure state, a subsystem S of a
quantum system with a wave function ψ will be described by a density matrix ρψS .

We can now define [9] a system with wave function ψ to be in microscopic thermal equi-
librium (MITE) if, for any not-too-large subsystem S, say subsystems with linear dimension
` < `0, the reduced density matrix of S is close to the thermal equilibrium density matrix of S

ρψS ≈ ρmc
S (18)

where

ρψS = trSc |ψ〉〈ψ| (19)

is the reduced density matrix of S obtained by tracing out the complement Sc of S, and

ρmc
S = trSc ρmc (20)

ρmc is the microcanonical density matrix corresponding to a uniform distribution over en-
ergy eigenstates in HE . For macroscopic systems ρmc

S can be replaced by ρca
S , where ρca is the

canoncial density matrix.
The distinction between MITE and MATE is particularly relevant for systems with many-

body localization (MBL) for which the energy eigenfunctions fail to be in MITE while neces-
sarily most of them, but not all, are in MATE.

The argument for most energy eigenfunctions being in MATE is based on the fact that,
calling D the dimension of HE , we have for energy eigenfunctions |n〉

1

D

D∑
n=1

〈n|Pνeq |n〉 =
1

D
tr(Pνeq) = 1− ε (21)

Noting that 〈n|Pνeq |n〉 6 1, the average being close to 1 means that most eigenstates are close
to Hνeq . This is consistent with the Eigenfunction Thermalization Hypothesis (ETH).

In fact for generic macroscopic systems, including those with MBL, most wave functions
in an energy shell are in both MATE and MITE.

This follows from the following result.

IAMP News Bulletin, April 2021 13
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Canonical Typicality

Consider an isolated system consisting of two parts. Call them system 1 and 2 or system and
reservoir. Then [11] we have the following result, see also [16].

Let H be the Hamiltonian of the whole system and let the number of particles in system 1
and 2 be N1 � N2. Let HE ⊂ H1 ⊗H2 be an energy shell. Then for most ψ ∈ HE with
||ψ|| = 1,

tr2 |ψ〉〈ψ| ≈ tr2 ρ
mc, (22)

where ρmc is the microcanonical density matrix of the whole system at energy E, i.e. equal
weight to all energy eigenstates in HE .

The theorem says that most wave functions in the energy shell HE are both in MATE and in
MITE. In fact for macroscopic systems one can show that MITE implies MATE. The opposite
is however not true. This is particularly relevant when one considers energy eigenfunctions
|n〉. While most energy eigenstates, including those for systems with MBL must, as shown,
generally be in MATE, most energy eigenfunctions for systems with MBL are not in MITE.

There is no analog to MITE for a classical system where any subsystem of a composite
system in state X(1,2) is also in a unique state X(2).

When the interaction between systems 1 and 2 is weak, H ≈ H1 ⊗ I2 + I1 ⊗H2, then, as
is well known,

tr2 ρ
mc ≈ 1

Z
e−βH1 , (23)

for β = β(E) = dSeq(E)/dE.
If MATE-ETH holds strictly, i.e., if all energy eigenstates in HE are in MATE, then every

state ψ ∈ HE will sooner or later reach MATE and spend most of the time in MATE in the
long run. That is because, writing f(t) = limT→∞

1
T

´ T
0

´
f(t)dt for time averages, |n〉 for the

energy eigenstate with eigenvalue En and ψt = e−iHtψ,

〈ψt|Peq|ψt〉 =
∑
n,n′

〈ψ|n〉eiEnt〈n|Peq|n′〉e−iEn′ t〈n′|ψ〉 (24)

=
∑
n

|〈ψ|n〉|2〈n|Peq|n〉 >
∑
n

|〈ψ|n〉|2(1− δ) (25)

= 1− δ, (26)

provided H is non-degenerate, i.e., En 6= En′ for n = n′ (using eiEt = 1 if E = 0 and = 0
otherwise).

A similar statement is true when there is degeneracy.
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Summary of Boltzmann’s Ideas (also Maxwell, Kelvin, Feynman)
Time-asymmetric behavior as embodied in the second law of thermodynamics is observed in in-
dividual macroscopic systems. It can be understood as arising naturally from time-symmetric
microscopic laws when account is taken of a) the great disparity between microscopic and
macroscopic sizes, b) initial conditions, and c) that what we observe is “typical” behaviors —
not all imaginable ones. Common alternate explanations, such as those based on equating ir-
reversible macroscopic behavior with ergodic or mixing properties of ensembles (probability
distributions) already present for chaotic dynamical systems having only a few degrees of free-
dom or on the impossibility of having a truly isolated system, are either unnecessary, misguided
or misleading.

Let me end this article by quoting Einstein’s tribute to Boltzmann.

“On the basis of kinetic theory of gases Boltzmann had discovered that, aside from
a constant factor, entropy is equivalent to the logarithm of the “probability” of the
state under consideration. Through this insight he recognized the nature of course
of events which, in the sense of thermodynamics, are “irreversible”. Seen from the
molecular-mechanical point of view, however all courses of events are reversible.
If one calls a molecular-theoretically defined state a microscopically described one,
or, more briefly, micro-state, then an immensely large number (Z) of states belong
to a macroscopic condition. Z is then a measure of the probability of a chosen
macro-state. This idea appears to be of outstanding importance also because of
the fact that its usefulness is not limited to microscopic description on the basis of
mechanics.”

— A. Einstein, Autobiographical notes
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The Ionization Problem

by PHAN THÀNH NAM (Munich)

The question: “How many electrons can a nucleus bind?” is as old as
quantum mechanics, but its rigorous answer based on the many-body
Schrödinger equation remains a difficult challenge to mathematicians.
Nevertheless, there has been remarkable progress in this problem in
the past four decades. We will review the current understanding of the
Schrödinger equation and then turn to simplified models where the prob-
lem has been solved satisfactorily. We will also discuss the connection
to the liquid drop model, which is somewhat more classical, but no less
interesting.

1 Atomic Schrödinger equation
For us, an atom is a system of N quantum electrons of charge −1 moving around a heavy
classical nucleus of charge Z ∈ N and interacting via Coulomb force (we use atomic units).
The wave functions of N electrons are normalized functions in L2(R3N) satisfying the anti-
symmetry

Ψ(x1, ..., xi, ..., xj, ..., xN) = −Ψ(x1, ..., xj, ..., xi, ..., xN), ∀i 6= j,

where xi ∈ R3 stands for the position of the i-th electron (we will ignore the spin for simplicity).
The Hamiltonian of the system is

HN =
N∑
i=1

(
−1

2
∆xi −

Z

|xi|

)
+

∑
16i<j6N

1

|xi − xj|
.

The self-adjointness of HN follows from a famous theorem of Kato.
We are interested in the ground state problem

EN = inf
||Ψ||L2=1

〈Ψ, HNΨ〉.

By a standard variational method, we know that the minimizers, if they exist, are solutions to
the Schrödinger equation

HNΨ = ENΨ.

The existence/nonexistence issue is related to the stability of the system, namely whether all
electrons will be bound, or some of them may escape to infinity. Obviously, HN and EN also
depend on Z, but let us not include this dependence in the notation.

It is natural to guess that there is a sharp transition when N crosses the value Z+1. Heuris-
tically, if N < Z + 1, then the outermost electron sees the rest of the system as a large nucleus
of the effective charge Z − (N − 1) > 0. Hence, this electron will “prefer to stay” by the
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Coulomb attraction. On the other hand, if N > Z + 1, then the outermost electron will “prefer
to go away” by the Coulomb repulsion.

Part of the above heuristic guess was justified by Zhislin in 1960.

Theorem 1. If N < Z + 1, then EN has a minimizer.

More precisely, he proved that if N < Z + 1, then EN < EN−1. This strict binding
inequality prevents any electron from escaping to infinity, thus ensuring the compactness of
minimising sequences for EN . On a more abstract level, if N < Z + 1, then EN is strictly
below the essential spectrum of HN . In fact, the essential spectrum of HN is [EN−1,∞) due to
the celebrated Hunziker–van Winter–Zhislin (HVZ) theorem.

Thus, Zhislin’s theorem ensures the existence of all positive ions and neutral atoms. On the
other hand, the nonexistence of highly negative ions is much more difficult, and often referred
to as the “ionization conjecture”; see e.g. [23, Problem 9] and [15, Chapter 12].

Conjecture 2. There exists a universal constant C > 0 (possibly C = 1) such that if N >
Z + C, then EN has no minimizer.

Note that the above heuristic argument is purely classical and it is too rough to understand
the delicate quantum problem at hand. In 1983, Benguria and Lieb [1] proved that if the anti-
symmetry condition of the wave functions is ignored, then the atoms with “bosonic electrons”
always exist as soon as N 6 tcZ with a universal constant tc > 1 (numerically tc ≈ 1.21,
computed by Baumgartner). Thus the ionization problem requires a deep insight, as the particle
statistics, more precisely Pauli’s exclusion principle, play an essential role.

2 Known results
A rigorous upper bound to the question “How many electrons can a nucleus bind?” was first
derived by Ruskai [19] and Sigal [21] independently in 1982. They proved that there exists
a critical value Nc(Z) < ∞ such that if N > Nc(Z), then EN has no minimizer. In these
works, they applied certain inequalities on classical point particles to the quantum problem
via the geometric localization method. In particular, Sigal realized that for every collection
{xi}Ni=1 ⊂ R3 with N > 2Z + 1, the energy contributed by the farthest electron, xN says, is
always positive because of the triangle inequality

− Z

|xN |
+

N−1∑
i=1

1

|xi − xN |
> − Z

|xN |
+
N − 1

2|xN |
> 0.

This leads to the upper bound lim supZ→∞Nc(Z)/Z 6 2 in [22].
Later, Lieb, Sigal, Simon and Thirring [13] found the following improvement: for every

{xi}Ni=1 ⊂ R3 with N large, one has

max
16j6N

{ ∑
16i6N,i 6=j

1

|xi − xj|
− N + o(N)

|xj|

}
> 0. (2.1)
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Consequently, they obtained the asymptotic neutrality

lim
Z→∞

Nc(Z)

Z
= 1.

It is unclear whether one can improve the quantity N +o(N) in (2.1) to N +O(Nα) with some
constant 0 6 α < 1.

In 1990, Fefferman and Seco [4], and Seco, Sigal and Solovej [20], proved

Theorem 3. When Z →∞, we have Nc(Z) 6 Z +O(Z5/7).

This bound was obtained by comparing it with the Thomas–Fermi theory (that we will
revisit below) and taking into account quantitative estimates for Scott’s correction (studied by
Hughes, and by Siedentop and Weikard). There has been no further improvement in the past
three decades!

Instead of the asymptotics as Z → ∞, one may also be interested in explicit bounds for
all Z (in fact, 1 6 Z 6 118 for realistic atoms in the current periodic table). The best known
result in this direction is

Theorem 4 ([12, 17]). For all Z > 1, Nc(Z) < min(2Z + 1, 1.22Z + 3Z1/3).

Let us quickly explain Lieb’s proof of the bound 2Z + 1 in [12], since it is short and
important. The starting point is the following identity, which follows from the Schrödinger
equation

〈|xN |ΨN , (HN − EN)ΨN〉 = 0.

The idea of “multiplying the equation by |x|” was also used by Benguria on a simplified model.
Then we decompose

HN = HN−1 −∆N +
N−1∑
i=1

1

|xi − xN |
.

For the first (N − 1) electrons, we use the obvious inequality

HN−1 > EN−1 > EN .

For the N -th electron, we use the operator inequality

(−∆)|x|+ |x|(−∆) > 0 on L2(R3)

(which is equivalent to Hardy’s inequality). Consequently,

Z >

N∑
i=1

〈
Ψ,

|xN |
|xi − xN |

Ψ

〉
=

1

2

N∑
i=1

〈
Ψ,
|xN |+ |xi|
|xi − xN |

Ψ

〉
>
N − 1

2

Thus N < 2Z + 1. Here, we have used the symmetry of |Ψ|2 and the triangle inequality.
To get the bound in [17], we multiply Schrödinger’s equation with |xN |2 instead of |xN | and

proceed similarly. In this case, the operator (−∆)|x|2 + |x|2(−∆) on L2(R3) is not positive,
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but its negative part can be controlled using a special property of the ground state. The key
point is, instead of using the triangle inequality, we now have

Z > inf
{xi}Ni=1⊂R3

∑
16i<j6N

|xi|2+|xj |2
|xi−xj |

(N − 1)
N∑
i=1

|xi|
+O(N2/3) = βN +O(N2/3)

with the statistical value

β := inf
ρ probability
measure in R3


s

R3×R3

x2+y2

2|x−y|dρ(x)dρ(y)

´
R3

|x|dρ(x)

 .

It is nontrivial to compute β, but we can estimate it using the inequality

x

R3×R3

x2 + y2

|x− y| dρ(x) dρ(y) >
x

R3×R3

(
max(|x|, |y|) +

min(|x|, |y|)2

|x− y|

)
dρ(x)dρ(y).

which is a consequence of (2.1). This gives β > 0.82, leading to the bound 1.22Z + 3Z1/3 (as
β−1 6 1.22).

3 Thomas-Fermi theory

Since the Schrödinger equation is too complicated, for practical computations one often re-
lies on approximate models which are nonlinear but dependent on less variables. In density
functional theory, a popular method in computational physics and chemistry, one replaces the
N -body wave function Ψ with its one-body density

ρΨ(x) = N

ˆ
R3(N−1)

|Ψ(x, x2, ..., xN)|2dx2...dxN .

Clearly, ρΨ : R3 → [0,∞) and
´
R3 ρΨ = N .

The oldest density functional theory was proposed by Thomas and Fermi in 1927. In the
Thomas–Fermi (TF) theory, the ground state energy EN is replaced by its semiclassical ap-
proximation

ETF(N) = inf´
ρ=N

{
CTF

ˆ
R3

(
ρ5/3(x)− Z

|x|ρ(x)
)
dx+

1

2

ˆ
R3

ˆ
R3

ρ(x)ρ(y)

|x− y| dxdy
}

with a constant CTF > 0. The existence and properties of the TF minimizers was studied by
Lieb and Simon in [14]. In particular, they proved

Theorem 5. ETF(N) has a minimizer if and only if N 6 Z.
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By standard techniques, we find that the TF functional is convex and rotation invariant.
Therefore, if a minimizer exists, it is unique and radial. Moreover, it satisfies the TF equation

5

3
CTFρ(x)2/3 =

[
Z|x|−1 − ρ ∗ |x|−1 − µ

]
+

for some chemical potential µ 6 0.
The existence of the TF minimizer is rather similar to Zhislin’s theorem for the Schrödinger

equation. The nonexistence is more challenging. The original proof of Lieb and Simon is based
on a clever use of the maximum principle. Here we offer another proof, using a variant of the
Benguria–Lieb argument.

Proof of N 6 Z [18]. Assume that the TF equation has a radial solution ρ. Multiplying the
equation with |x|kρ(x), k > 1, we have the pointwise inequality(

Z|x|−1 − ρ ∗ |x|−1 − µ
)
ρ(x)|x|k =

5

3
CTFρ(x)5/3|x|k > 0.

Then we integrate over {|x| 6 R}. Note that µ 6 0. Moreover, since ρ is radial, by Newton’s
theorem we have

ρ ∗ |x|−1 =

ˆ
R3

ρ(y)

max(|x|, |y|)dy.

Consequently,

Z

ˆ
|x|6R

|x|k−1ρ(x) >
ˆ
|x|6R

|x|kρ(x)(ρ ∗ |x|−1)dx

>
1

2

x

|x|,|y|6R

(|x|k + |y|k)ρ(x)ρ(y)

max(|x|, |y|) dxdy.

On the other hand, by the AM-GM inequality,

|x|k + |y|k
max(|x|, |y|) >

(
1− 1

k

)(
|x|k−1 + |y|k−1

)
.

Thus

Z

ˆ
|x|6R

|x|k−1ρ(x)dx >

(
1− 1

k

)(ˆ
|x|6R

|x|k−1ρ(x)dx
)(ˆ

|y|6R
ρ(y)dy

)
.

Taking R→∞ and k →∞, we conclude that
´
R3 ρ 6 Z.

When N = Z, the TF minimizer has the perfect scaling property:

ρTF
Z (x) = Z2ρTF

1 (Z1/3x), ∀x ∈ R3

where the function ρTF
1 is independent of Z. Moreover, it satisfies the TF equation with chem-

ical potential 0. Thus if we denote the TF potential

ϕTF
Z (x) = Z|x|−1 − ρTF

Z ∗ |x|−1,
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then the TF equation can be written as the nonlinear Schrödinger equation

∆ϕTF
Z (x) = 4π(

5

3
CTF)−3/2ϕTF

Z (x)3/2.

This leads to the following Sommerfeld estimate [24, Theorem 4.6].

Theorem 6. Denote ATF = (5CTF)3(3π2)−1 and ζ = (
√

73− 7)/2. Then

ATF > ϕTF
Z (x)|x|4 > ATF − C

(
Z1/3|x|

)−ζ
, ∀x 6= 0 (3.1)

In particular, when |x| � Z−1/3, then the TF potential ϕTF
Z is more or less independent of

Z. This universality makes the TF approximation much more useful than what can normally
be explained by its semiclassical nature. More precisely, the standard semiclassical analysis
ensures that the TF theory gives a good approximation for the electron density in the distance
|x| ∼ Z−1/3. However, we may expect that the TF theory gives a good approximation for larger
distances, possibly up to |x| ∼ 1. We refer to [25] for a detailed discussion.

4 Hartree-Fock theory
Invented shortly after the discovery of the Schrödinger equation, the Hartree–Fock (HF) theory
has been a very useful computational method to describe electronic orbitals. In this theory,
one restricts N -body wave functions to Slater determinants, or equivalently to their one-body
density matrices which are trace class operators on L2(R3) satisfying

0 6 γ 6 1, γ = γ2, Trγ = N.

The HF ground state energy is

EHF(N) = inf
Trγ=N

(
Tr((−∆− Z|x|−1)γ)

+
1

2

x

R3×R3

ργ(x)ργ(y)− |γ(x; y)|2
|x− y| dxdy

)
where ργ(x) = γ(x;x) (the kernel of γ is defined properly via the spectral decomposition).

The existence of Hartree–Fock minimizers whenN < Z+1 was proved by Lieb and Simon
in 1977. The nonexistence was proved later by Solovej in 2003 [24].

Theorem 7. There exists a universal constant C > 0 such that if N > Z + C, then EHF(N)
has no minimizer.

To explain the proof, let us go back to the heuristic argument discussed before. Assume
that we have an efficient method to separate m outermost electrons. Then these particles see
the rest of the system as a big nucleus with the effective nuclear charge Z ′ = Z − (N −m).
Thus by the Benguria–Lieb method, we may hope to get a bound like m < 2Z ′ + 1. Since Z ′
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is smaller than Z, the loss of the factor 2 becomes less serious. If the procedure can be iterated
to bring Z ′ down to order 1, then we can conclude that N − Z is of order 1.

In [24], this approach is carried out rigorously by studying the screened nuclear potential

ΦHF
Z (x) =

Z

|x| −
ˆ
|y|6|x|

ρHF(y)

|x− y|dy.

This function will be compared with the corresponding TF version

ΦTF
Z (x) =

Z

|x| −
ˆ
|y|6|x|

ρTF(y)

|x− y|dy.

Similar to the TF potential ϕTF
Z (x), ΦTF

Z (x) behaves as |x|−4 for |x| � Z−1/3. It turns out
that this property holds true for the HF screened potential as well. The key ingredient of the
analysis in [24] is

Theorem 8. There exist constants C > 0, ε > 0 such that for all x 6= 0,

|ΦHF
Z (x)− ΦTF

Z (x)| 6 C(1 + |x|−4+ε).

This estimate can be proved by induction in |x|. First, for |x| 6 Z−1/3+ε, it follows by
the semiclassical approximation. For longer distances, one repeatedly uses the Sommerfeld
estimate (3.1) to get refined information for “inner electrons”, and then controls the “outer
electrons” in terms of the screened potential. At the end of the day, the universality of the TF
potential makes a miracle happen!

Let us explain why Theorem 8 implies the ionization bound. First, Theorem 8 implies that
for |x| = r ∼ 1, ˆ

|y|6r

ρHF(y)− ρTF(y)

|x− y| dy 6 Cr.

We can replace x by νx with ν ∈ S2, then average over ν and use Newton’s theorem. This
gives

Z ′ :=

ˆ
|y|6r

(ρHF(y)− ρTF(y))dy 6 Cr.

The number of outermost electrons, namely
´
|y|>r ρ

HF, can be controlled by a constant time Z ′,
leading to the final bound N − Z 6 C.

Clearly, this proof strategy requires an efficient way of splitting the problem from the inside
and the problem from the outside. This can be done for the Hartree–Fock theory, because
the energy functional has been greatly simplified to a one-body functional. For the N -body
Schrödinger equation, such a splitting would require a novel many-body localization technique
which is not available at the moment.
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5 Liquid drop model
Now let us turn to a related problem in the liquid drop model which is somewhat more classical
than the ionization conjecture. This model was proposed by Gamow in 1928 and further devel-
oped by Heisenberg, von Weizsäcker and Bohr in the 1930s. Recently, it has gained renewed
interest from many mathematicians [3].

In modern language, a nucleus is described in this theory by an open set Ω ⊂ R3 which
solves the minimization problem

EG(m) = inf
|Ω|=m

{
Per(Ω) +

1

2

ˆ
Ω

ˆ
Ω

1

|x− y|dxdy
}
.

Here m stands for the number of nucleons (protons and neutrons) and Per(Ω) is the perimeter
in the sense of De Giorgi (which is the surface area of Ω when the boundary is smooth). The
Coulomb term captures the electrostatic energy of protons.

It is generally assumed in physics literature that if a minimizer exists, then it is a ball.
Consequently, by comparing the energy of a ball of volume m with the energy of a union of
two balls of volume m/2, one expects the nonexistence of minimizers if m > m∗ with

m∗ = 5
2− 22/3

22/3 − 1
≈ 3.518.

Conjecture 9 ([2]). If m 6 m∗, then EG(m) is minimized by a ball. If m > m∗, then EG(m)
has no minimizer.

In particular, the nonexistence of minimizers for large m is consistent with nuclear fission
of heavy nuclei, which was discovered experimentally by Hahn and Strassmann in 1938.

German stamp in 1979 honoring Otto Hahn (Wikipedia 2020).

Mathematically, it is nontrivial to analyse EG(m) due to the energy competition: among
all measurable sets of a given volume, a ball minimizes the perimeter (by the isoperimetric
inequality) but maximizes the Coulomb self-interaction energy (by the Riesz rearrangement
inequality).

In 2014, Knüpfer and Muratov [9] proved the following
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Theorem 10. There exist constants 0 < m1 < m2 such that:
(i) If m < m1, then EG(m) has a unique minimizer which is a ball;
(ii) If m > m2, then EG(m) has no minimizer.

The proof in [9] uses deep techniques in geometric measure theory, including a quantita-
tive isoperimetric inequality proved by Fusco, Maggi and Pratelli in 2008. Independently, the
existence of small m was proved by Julin [10] and the nonexistence of large m was proved by
Lu and Otto [16]. In 2016, with Rupert Frank and Rowan Killip, we offered a new proof of
the nonexistence which also provides the quantitative bound m2 6 8. Let us explain the short
proofs in [10] and [5].

Proof. Existence for m small [10]. Consider

D(Ω) := Per(Ω) +
1

2

ˆ
Ω

ˆ
Ω

1

|x− y|dxdy − Per(Ω∗)− 1

2

ˆ
Ω∗

ˆ
Ω∗

1

|x− y|dxdy

where Ω∗ is the ball centered at 0 with volume |Ω∗| = |Ω| = m. We need to prove that if m is
small, then D(Ω) > 0 unless Ω is a ball. Denote

f = χΩ∗ − χΩ, V = f ∗ |x|−1.

By a quantitative isoperimetric inequality in [8], there exists a universal constant ε0 > 0
such that after an appropriate translation of Ω, we have

Per(Ω)− Per(Ω∗) > ε0

ˆ
R3

f(x)

|x| dx = ε0V (0).

Note that by Hardy–Littlewood rearrangement inequality, V (0) > 0 unless Ω is a ball. For the
Coulomb terms, we can write

1

2

ˆ
Ω

ˆ
Ω

1

|x− y|dxdy −
1

2

ˆ
Ω∗

ˆ
Ω∗

1

|x− y|dxdy

=
1

2

ˆ
R3

ˆ
R3

f(x)f(y)

|x− y| dxdy +

ˆ
R3

ˆ
R3

χΩ∗(x)f(y)

|x− y| dxdy

=
1

8π

ˆ
R3

|∇V (x)|2dx+

ˆ
Ω∗
V (x)dx.

In the last equality we used −∆V = 4πf . This Poison equation also shows that V is superhar-
monic in Ω∗ (as f > 0 in Ω∗), and hence

ˆ
R3

ˆ
R3

χΩ∗(x)f(y)

|x− y| dxdy =

ˆ
Ω∗
V (x)dx 6 |Ω∗|V (0) = mV (0).

Thus in summary, if m < ε0 and Ω is not a ball, then

D(Ω) > (ε0 −m)V (0) > 0.
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Nonexistence if m > 8 [5]. Assume that EG(m) has a minimizer Ω. We split Ω into two parts,
Ω = Ω+ ∪ Ω−, by a hyperplane H and then move Ω− to infinity by translations. Since Ω is a
minimizer, we obtain

Per(Ω) +

ˆ
Ω

ˆ
Ω

1

|x− y|dxdy 6 Per(Ω+) +

ˆ
Ω+

ˆ
Ω+

1

|x− y|dxdy

+ Per(Ω−) +

ˆ
Ω−

ˆ
Ω−

1

|x− y|dxdy

which is equivalent to

2H2(Ω ∩H) >
ˆ

Ω+

ˆ
Ω−

1

|x− y|dxdy.

HereH2 is the two-dimensional Hausdorff measure. Next, we parameterize:

H = Hν,` = {x ∈ R3 : x · ν = `}

with ν ∈ S2, ` ∈ R. The above inequality becomes

2H2(Ω ∩Hν,`) >
ˆ

Ω

ˆ
Ω

χ(ν · x > ` > ν · y)

|x− y| dxdy.

Integrating over ` ∈ R and using Fubini’s theorem we get

2|Ω| >
ˆ

Ω

ˆ
Ω

[ν · (x− y)]+
|x− y| dxdy.

Finally, averaging over ν ∈ S2 and using

ˆ
[ν · z]+

dν

4π
=
|z|
2

ˆ π/2

0

cos θ sin θdθ =
|z|
4

with z = (x− y), we conclude that 2|Ω| > 1
4
|Ω|2, namely |Ω| 6 8.

With Rupert Frank and Hanne Van Den Bosch, we used the cutting argument in the liquid
drop model to study the ionization problem in the Thomas–Fermi–Dirac-von Weisäcker theory
in [6], and in the Müller density matrix functional theory in [7]. In these theories, the standard
Benguria–Lieb method does not apply, but we can replace it by an appropriate modification
of the minimizers, leading to an efficient control of the number of particles “outside” in terms
of particles “inside”. This enables us to employ Solovej’s bootstrap argument to establish the
uniform bound N − Z 6 C.

6 Related problems
The ionization problem is an example of a question that is easy to find in physics textbooks,
but difficult to answer mathematically. Below we list some related open problems for the
Schrödinger operator HN .
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The main concept in the ionization problem is that in a large atom, although most of elec-
trons stay in the domain |x| ∼ Z−1/3, the binding property only depends on a few outermost
electrons in the region |x| ∼ 1. In fact, only this outer region is relevant to chemical reactions
in everyday life. Therefore, an important quantity of an atom is its radius. To fix the notation,
we define the radius RΨ of a wave function Ψ by requiring

ˆ
|x|>RΨ

ρΨ(x)dx = 1.

Conjecture 11 ([24]). There exist two universal constants 0 < R1 < R2 such that if N > Z
and EN has a minimizer Ψ, then R1 6 RΨ 6 R2.

Another important quantity is the ionization energy IN = EN−1 − EN .

Conjecture 12 ([23, 15]). There exists a universal constant C > 0 such that if N > Z, then
IN 6 C.

Conjecture 13 ([15]). The function N 7→ IN is non-increasing (equivalently N 7→ EN is
convex).

See [20] for partial results on Conjectures 11 and 12. A consequence of Conjecture 13
is that if EN−1 > EN (namely the nucleus can bind N electrons), then EN−2 > EN−1 (the
nucleus can bind N − 1 electrons). This “obvious fact” is still not proved mathematically!

So far we have only focused on the ground state problem for HN . Recall from the HVZ
theorem that the essential spectrum of HN is [EN−1,∞). Conjecture 2 mainly concerns the
existence of eigenvalues belowEN−1. Since the existence of embedded eigenvalues is generally
not expected, we have the following stronger version of Conjecture 2.

Conjecture 14. There exists a universal constant C > 0 such that if N > Z +C, then HN has
no eigenvalue.

The last issue has been studied by Lenzmann and Lewin in [11], who proved that HN has
no eigenvalue if N > 4Z + 1. This question is related to the scattering theory of dispersive
PDEs with long-range interaction potentials, which is interesting in its own right.

Short CV: Phan Thành Nam is a mathematical physicist working on analytical problems from
quantum physics. He is particularly interested in the spectral theory of many-body quantum
systems, including atoms, molecules and Bose gases. He is currently a professor of mathemat-
ics at LMU Munich.

This article is reprinted with permission from the EMS Newsletter, where it first appeared in
the December, 2020, issue, pp. 22–27.
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Time’s Arrow

This new column in the News Bulletin will list scientific anniversaries, commemorative confer-
ences, obituaries, and other commemorative items. We welcome your input for future issues,
which can be sent to bulletin@iamp.org.

Scientific anniversaries

1821. Augustin-Louis Cauchy published his Cours d’Analyse, introducing the notion of the
limit and setting the path for all future textbooks on infinitesimal calculus.

1921. The Niels Bohr Institute, then known simply as the Institute for Theoretical Physics, was
founded on 3 March. (Celebrations have been deferred to 2022.)

1971. Gerard ’t Hooft published “Renormalizable lagrangians for massive Yang-Mills fields,”
Nucl. Phys. B 35 (1971) 167–188, showing that Yang-Mills theories are renormalizable.

1971. The first network e-mail message was sent, by Ray Tomlinson of BBN.

Recent celebratory conferences

Mathematics of Alexander Shnirelman: from quantum chaos to hydrodynamics, Conference in
honour of Alexander Shnirelman’s 75th birthday. Dates: February 26–27, 2021

Barry Simon’s 75th Birthday Conference, A mini-conference in celebration of the 75th birthday
of Barry Simon, April 18, 2021

Lost luminaries

Detlef Dürr, 3 January, 2021.
Hermann Flaschka, 18 March, 2021.
Georgi Raikov, 10 March 2021.
Harold Widom, 20 January, 2021.

In 2020, in addition to those whose passing has already been acknowledged in these pages, we
remember:
Freeman Dyson, 28 February, 2020.
A memorial tribute is planned for a future issue of the News Bulletin, jointly published with the
Notices of the AMS.
Jean Ginibre, 26 March, 2020.
A memorial tribute is planned for a future issue of the News Bulletin.
Vaughn Frederick Randal Jones, 6 September, 2020.
A memorial tribute to Vaughn Jones appeared in the December Newsletter of the EMS.
André Martin, 11 November, 2020.
Rudolf Morf, 14 September, 2020.
Mikhail Alexandrovich Shubin, 13 May, 2020.
A memorial tribute to Misha Shubin appeared in the January Notices of the AMS.
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News from the IAMP Executive Committee

The IAMP Executive Committee wishes to express its deep appreciation to Jan Dereziński and
Daniel Ueltschi for creating the One World Mathematical Physics Seminar and for so expertly
running it for the past year.
For the continuation of the seminar they are now joined by Executive Committee members
Kasia Rejzner and Marcello Porta.
Flora Koukiou and Hal Tasaki organized a brief tribute to the past and current organizers of
the seminar, which took place after the talk by Jan Wehr on March 30, 2021. A recording
of the tribute, including short speeches by Robert Seiringer, Bruno Nachtergaele, and Elliott
Lieb can be found here: http://youtu.be/uFpegN8ALYw.
The program for the seminar and links to recordings of past talks are available on the IAMP
website:

http://www.iamp.org/page.php?page=page_seminar.

New individual members

IAMP welcomes the following new members

1. DR. ALLESSANDRO ZAMPINI, Università degli Studi Di Napoli Federico II, Napoli,
Italy

2. DR. SIMONE RADEMACHER, IST, Klosterneuburg, Austria

3. MR. THÉOTIME GIRARDOT, LPMMC, Grenoble, France

4. DR. TYLER HELMUTH, University of Durham, United Kingdom

5. PROF. STEPHEN P.A.A. DIAS BARRETO, Padre Conceicao College of Engineering,
Verna, India

6. DR. ALVIN MOON, University of Copenhagen, Denmark

7. DR. PER MOOSAVI , ETH Zurich, Zurich, Switzerland

8. DR. PETER MADSEN, Université Paris-Dauphine, Paris, France

9. MR. SEVERIN SCHRAVEN, University of Zurich, Zurich, Switzerland

10. PROF. ELIO CONTE, School of Advanced International Studies on Applied Theoretical
and non Linear methodologies of Physics, Bari, Italy

11. MR. GOGOI DHRUBA JYOTI, Dibrugarh University, India

12. DR. TOBIAS RIED, Max Planck Institute for Mathematics in the Sciences, Leipzig,
Germany
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13. DR. ISHMAEL TAKYI, Kwame Nkrumah University of Science and Technology, Ku-
masi, Ghana

Upcoming conferences

Random Matrix Theory and Statistics

April 30, 2021, Royal Statistical Society, online meeting.

XX International Congress on Mathematical Physics
Geneva, August 2-7, 2021.
The International Congress on Mathematical Physics (ICMP) is the most important conference
of the International Association of Mathematical Physics (IAMP). In 2021, the Congress will
take place in Geneva, August 2-7, at the International Conference Centre (CICG).

The organization of the Congress is under way. The list of plenary and session speak-
ers, together with other useful information, can already be found at the Congress webpage
https://www.icmp2021.com/. As usual, the Congress will be preceded by the Young Research
Symposium (YRS) that will be held at the University of Geneva, July 29-31, 2021.

Registration for ICMP and YRS, application for financial help for junior participants and
abstract submission will open in the next weeks. Because of the uncertainty related to the
COVID 19 pandemic, we are planning to stream ICMP talks. For this reason, we will offer two
separate registration options, for full on-site participation and for remote participation (with a
reduced fee). At any time, participants will be able to upgrade to on-site participation or to
downgrade to remote participation, at essentially no additional costs. We very much hope that
by next summer, the situation will improve and that we will be able to welcome many of you
in Geneva!

On behalf of the local organizing committee, we would like to invite all IAMP members to
attend ICMP 2021.

For an updated list of academic job announcements in mathematical physics and related fields
visit

http://www.iamp.org/page.php?page=page positions

Michael Loss (IAMP Secretary)
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