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Krzysztof Gawȩdzki – a master of quantum field theory

Krzysztof Gawȩdzki – a master of quantum field theory

by ANTTI KUPIAINEN (Helsinki)

Krzysztof Gawȩdzki was one of the giants of mathematical physics of the past 50 years. Born
in 1947 at Zarki, Poland, he did his studies at the University of Warsaw where he got his PhD
in 1971 and then continued during 1971-1981 as a researcher at the Department of Mathemat-
ical Methods in Physics in Warsaw. This institute led by Krzysztof Maurin gathered at that
time some of the leading mathematical physicists in Poland and among them Krzysztof was
particularly close to Tadeusz Bałaban, Jerzy Kijowski and Stanislav Voronovich.

His work spanned an astonishing range of topics including geometric quantisation, super-
manifolds, renormalisation group, conformal field theory, turbulence, KAM theory, stochastic
thermodynamics, topological insulators and even an experiment. Despite this variety his ap-
proach to research was not superficial; quite the contrary when embarking seriously on a new
subject he worked years to reach a deep understanding of it. He was equally comfortable with
rigorous proofs as with long and complicated calculations. A unifying theme of all his work is
quantum field theory and he was one of the leading field theorists of the past five decades. I had
the privilege to collaborate with him for more than twenty years and for that collaboration we
shared the American Physical Society’s 2022 Dannie Heineman Prize in mathematical physics
with the citation ”For fundamental contributions to quantum field theory, statistical mechanics,
and fluid dynamics using geometric, probabilistic, and renormalization group ideas.” In this
article I will review some of his and our joint work on these subjects.

1 Renormalization Group
With his advisor Krzysztof Maurin, Krzysztof got a solid education in geometry and analysis
which is visible in his later career. His thesis ”On the geometrisation of the canonical for-
malism in classical field theory” is on the geometrical side, whereas his habilitation in 1976
”Fourier-like kernels in geometric quantisation” combines geometry and analysis. In the mid-
70’s Krzysztof decided he wanted to enter the rapidly developing field of constructive quantum
field theory. This was not an easy task in those days for somebody working alone in Poland
far away from where the action was. Glimm, Jaffe and Spencer had recently [44] proven the
Z2 symmetry-breaking phase transition in φ4

2 QFT and there was some debate in the commu-
nity whether the existence of three low temperature phases could be established in the φ6

2 QFT.
Krzysztof showed in [27] that this can be done and in the process learned the state of the art of
cluster and polymer expansion methods in Euclidean QFT. This exercise also convinced him
that to go beyond the super-renormalisable cases of two and three dimensional QFTs towards
construction of the physically relevant four dimensional ones new ideas are needed and these
new ideas have to come from physics where the renormalisation group (RG) had transformed
the understanding of QFT and 2nd order phase transitions. RG had been introduced to math-
ematical physicists by Blecher and Sinai [9] and Collet and Eckmann [17] in the context of
Dyson’s hierarchical model [19] and by Gallavotti’s group in Rome [26, 5, 6]. Especially the
latter served as an inspiration to our joint work that started during our stay at Arthur Jaffe’s
group at Harvard 1979-80.
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The simplest interacting QFT model that had been studied in constructive field theory is the
φ4
d model, a theory of a scalar field φ : Rd → R with classical action functional

Sm,λ(φ) =

ˆ
((∇φ)2 +m2φ2 + λφ4)dx. (1)

In Euclidean QFT one attempts to construct a probability law on some space F of fields φ
formally given by the expectation on suitable observables F : F → R

〈F 〉 = Z−1

ˆ
F
F (φ)e−S(φ)Dφ. (2)

A natural approach is to perturb around the non-interacting case λ = 0 in which case the field
is Gaussian, a random distribution with covariance given by the Green function

〈φ(x)φ(y)〉 = (−∆ +m2)−1(x, y).

Due to the divergence of this expression as x→ y this field is almost surely not a function but
rather a generalised function with regularityH−s(Rd), s > d−2

2
. This singular behaviour makes

the definition of (2) as a perturbation of the λ = 0 case problematic since one needs to make
sense of φ(x)4 for a distribution. And indeed, a formal perturbation theory for (2) in powers
of λ leads to divergent expressions (”ultraviolet problem”). Likewise, for m2 = 0 the field is
strongly correlated at long distances

〈φ(x)φ(y)〉 ∼ |x− y|2−d

for d > 2 leading to ”infrared divergencies” in perturbation theory.
A scaling argument reveals the role the dimension d plays in the problem. The case of

m2 = 0 is the Gaussian free field which is scale invariant φ law
= φ` where φ`(x) = `

d−2
2 φ(`x)1.

Substitution to (1) gives

Sm,λ(φ) = S`m,`4−dλ(φ`) (3)

so we are led to expect that at small spatial scales i.e. ` → 0 the parameter λ is irrelevant if
d < 4 and at large spatial scales i.e. ` → ∞ this happens if d > 4. Thus the UV behaviour
should be close to Gaussian in the former case and the IR behaviour at the critical point likewise
in the latter case. It turns out that the exact scaling (3) does not hold for the probability law (2)
due to renormalisation needed to define it but the above conclusions hold nevertheless.

Constructive QFT had solved the UV problem in d < 4 by defining the measure (2) as a
limit as ε → 0 of regularised measures involving a small scale cutoff ε e.g. by defining the
field on the lattice εZd instead of Rd. Then the limit exists provided one adds an ε dependent
term δm2(ε)φ2 to (1) where δm2(ε) = aλ log ε in d = 2 and δm2(ε) = bλ/ε + cλ2 log ε in
d = 3 with explicit coefficients a, b, c. However, this approach fails in d = 4 where formally an
infinite number of such diverging constants (”counterterms”) is needed and also for the quartic
coupling λ.

1Some care is needed in d = 2 where the field is defined only modulo constants
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The Kadanoff-Wilson RG approach to QFT and critical phenomena is to view the problem
via effective actions S` describing physics at spatial scale `. S` has UV cutoff `, e.g. in the form
of lattice of spacing ` and e−S`(φ)Dφ (normalised to a probability measure) is the probability
distribution of the field φ coarse grained to scale `. The Renormalisation Group flow is the map

`→ S`

and it describes how physics changes with scale. The UV problem is then to find a Sε of the
form (1) with ε dependent parameters such that starting with Sε the resulting S` has a limit as
ε→ 0 for all ` > 0. For the IR problem the ε is fixed, say to ε = 1, and one inquires about the
behaviour of S` as `→∞.

It is convenient (and necessary if one works on the lattice) to study RG flow in discrete
steps S` → SL` where L > 1 is fixed. Then one has

e−SL`(φ) =

ˆ
e−S`(φ+ζ)Dζ (4)

where ζ is a field on scales [`, L`]. Going to dimensionless variables (ϕ` above) this path
integral has UV cutoff 1 and IR cutoff L and thus one ends up studying the iteration of a fixed
map R acting on unit cutoff action functionals H`(ϕ) = S`(ϕ`−1) which can be thought as
Hamiltonians of a classical spin system on Zd where the spins ϕ(x) ∈ R. This suggests that
one could hope for a rigorous control of the UV problem if e−H` becomes Gaussian as ` → 0
and of the IR-problem if this happens as ` → ∞ i.e.in the asymptotically free cases. The
above scaling argument indicates this is the case for the UV problem in d < 4 and the IR
problem for d > 4. The borderline case d = 4 requires a more detailed analysis of the RG flow
and understanding such cases rigorously was the problem that Krzysztof and I set out to solve
in 1979.

The analysis boils down to setting up the RG transformation in a way that can be be iterated.
Since we are considering Hamiltonians H that are perturbations of a quadratic one we write

e−H(ϕ)Dϕ = e−V (ϕ)dµ(ϕ) ,

where µ is a Gaussian measure preserved by the RG, i.e. its fixed point. The RG map V → RV
consists of two steps: a coarse graining and a rescaling. Coarse graining is realised for the
Gaussian measure by decomposing ϕ into a sum of independent fields

ϕ = ϕ′ + ζ

where ϕ′ is the large scale part involving spatial scales≥ L and ζ the small scale part involving
scales in the range [1, L]. The covariance G of ϕ then decomposes as G = G′ + Γ and the
coarse graining map becomes

e−V
′(ϕ′) =

ˆ
e−V (ϕ′+ζ)dµΓ(ζ). (5)

Finally, the rescaling is defined by ϕ→ ϕL−1 so that RV (ϕ) = V ′(ϕL−1).
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Let us apply the coarse graining map (5) to a local potential V of the form

V (ϕ) =
∑
x∈Λ

[(µϕ(x)2 + gϕ(x)4] (6)

with Λ ⊂ Zd. The covariance Γ has exponential decay with decay rate O(L−1). Hence (5) is
a problem of classical statistical mechanics in the high temperature regime. Furthermore if we
start with µ and g small we expect the problem to be perturbative. We can formally expand the
exponential in Taylor series and evaluate the resulting terms using Gaussian integration (Wick
formula). The result will be of the form

V ′(ϕ) =
∞∑
m=0

∑
x1,...,xm∈Λ′

Km(x1, . . . ,xm)ϕ(x1) . . . ϕ(xm) , (7)

where Λ′ = L−1Λ and Km(x1, . . . ,xm) are non-local many-body interactions, each of which
given by a formal perturbation series in powers of g, µ and coefficients with exponential decay
in the separations xi − xj . The formal perturbation series diverges with the n:th Taylor coef-
ficient growing as n!. The reason for this divergence can be traced back to the growth of the
ϕ4 interaction at infinity. Nevertheless, it turns out the series (7) converges provided the ϕ is
everywhere bounded.

In the rigorous approach (5) is analysed by a cluster expansion applied to the Gaussian
measure µΓ. This results in an expansion

e−V
′(ϕ′) =

∞∑
k=0

∑
{X1,...,Xk}

k∏
i=1

ρXi(ϕ
′) ,

where Xi ⊂ Λ′ are disjoint sets, called polymers and ρXi(ϕ
′) depends on ϕ′|Xi . The weight

ρX of a polymer is exponentially small in the size of X and it also carries smallness in g
if ‖ϕ′|X‖∞ ≤ Rg where Rg → ∞ when g → 0. In the case ‖ϕ′|X‖∞ > Rg, ρX carries
smallness via a factor exp[−cg∑ϕ′(x)4] inherited from V . These bounds guarantee that one
can exponentiate the polymer expansion in any region Y where ‖ϕ′|Y ‖∞ ≤ Rg recovering there
an expansion of the form (7) (with Λ′ replaced by Y ) and which is convergent.

In order to iterate this RG map one then needs to exhibit in the expansion (7) a finite number
of relevant and marginal terms i.e. ones that do not contract under the linearisation of the map
V → RV . For the case at hand and d = 4 they turn out to be the local ones occuring in
(6). All the other terms form an infinite dimensional space of irrelevant perturbations that
contract under the linearisation. The marginal parameter g contracts due to the second order
in g contributions. Finally one has to fine tune the relevant parameter µ of V so that µ will
not expand and repeat this for all further iterations Vn of the RG map in order to construct the
critical point, i.e. the determining of µ as a function of g so that µn stays small for all n. Finally,
all this will work provided one can also iterate the stability bound exp[−cgn

∑
ϕ(x)4] for the

polymers in the large field region.
This procedure was carried out for the IR problem of the ϕ4 problem in d = 4 in [33] where

the Gaussian (mean field) behaviour at critical temperature

〈ϕ(x)ϕ(y)〉 ∼ Z|x− y|−2, |x− y| → ∞
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was proven. A similar result was also proven in [24] using a different method.
As for the original goal of constructing a renormalisable QFT, the above analysis shows

that this is not possible for the φ4
4 model if we want to stay in the perturbative region during the

iteration. This is so since in this case gn is decreasing in n and for the ε → 0 limit we need to
iterate the RG map logL(`/ε) times to reach the scale `. Hence under this perturbative condition
the ε→ 0 limit is necessarily Gaussian. The nonperturbative result where gn are allowed to be
arbitrary was established by Aizenman and Duminil-Copin 36 years later in the beautiful work
[1].

The simplest UV asymptotically free model is the two-dimensional fermionic Gross-Neveu
model

S(ψ) =

ˆ
(ψ̄γµ∂µψ + g(ψ̄ψ)2)d2x, ψ = (ψa)

N
a=1.

Like for φ4
4 the coupling λ is dimensionless, but this time in two dimensions. In [34] the free

field behaviour at short distances was established

〈ψ̄(x)ψ(y)〉 ∼ Z(γµ∂µ)−1(x− y), |x− y| → 0.

The fermionic model is technically much nicer as the large field problem dos not appear (due
to Pauli exclusion) and the representation (7) holds everywhere in field space. Similar result
was also proven in [25] using a different method.

The only reason for considering asymptotically free problems was that then it is possible to
have all the effective Hamiltonias H` close to a Gaussian. There is however another option if
the RG has a non-Gaussian fixed point close to the Gaussian one. For the Gross-Neveu model
this can be arranged by changing the scaling properties of the Gaussian case by replacing the
covariance in Fourier space γµpµ/p2 to γµpµ/p2−ε with ε > 0. In [35] it was proved that the RG
has a non-Gaussian fixed point where g = O(ε). This theory is non-renormalisable in the sense
of requiring counterterms for an infinite number of parameters but in the Wilsonian picture
there is no obstruction to its existence. The RG approach was used to clarify other puzzles in
the perturbative QFT such as the renormalon poles in the Borel summed series [36] and the
meaning of the perturbative φ4

4 expansion that is well defined order by order even though the
theory is Gaussian [37].

The polymer expansion approach to RG was subsequently used to several problems, for a
review see [3]. The formalism was extended also to the study of first order phase transitions
in [32], to disordered systems in [11, 12], to Kolmogorov Arnold Moser theory in [10] and
even to quantum systems in [18]. However, it has remained up to this day restricted to situa-
tions that are close to Gaussian, and a more nonperturbative formalism is still missing. This
situation has its parallel in the numerical approaches to RG where it has been very hard to go
beyond approximative RG schemes where the RG map is truncated in order to keep the effec-
tive actions local. Adding nonlocal corrections to such schemes has not resulted in numerical
improvements unlike in the bootstrap approach where adding more input to approximations has
resulted in improving results for critical exponents [56]. Hence there is still work for mathe-
matical physicists to do in this field!
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2 Conformal field theory
The construction of the Gross-Neveu model fulfilled the original aim of extending constructive
field theory beyond the super-renormalisable cases. A natural next step would have been to use
renormalisation group to tackle more physically relevant cases, the most important being the
four dimensional Yang-Mills theory. This challenge was taken by Krzysztof’s colleague from
Warsaw times, Tadeusz Bałaban [2].

In fundamental physics however a paradigm shift occurred in 1984 with the first superstring
revolution and Krzysztof was eager to change directions. The previous year Belavin, Polyakov
and Zamolodchikov had written the fundamental paper on the structure of two dimensional
conformal field theory (CFT) [4], and once it was understood that CFT is a natural building
block for string theory the subject exploded. While much of this study was algebraic and
had little contact to action functionals and path integrals an important exception was provided
by the Wess-Zumino-Witten-Novikov (WZWN) model and the related coset models. In the
simplest WZNW model [60, 50] the field g : Σ → G is defined on a two dimensional surface
Σ and it takes values in a compact simply connected Lie Group G (e.g. G = SU(2)). In this
setup one starts with the Wess-Zumino sigma model formally defined by the path integral for
an observable F (g) by

〈F 〉 =

ˆ
F (g)e−βSWZ(g)Dg ,

where the Wess-Zumino action is defined by

SWZ(g) = − i

4π

ˆ

Σ

Tr
(
(g−1∂g) ∧ (g−1∂̄g).

Here “Tr” is the suitably normalised invariant form on the Lie algebra G ofG. When attempting
to define the path integral one encounters UV divergences and the need for renornalisation.
This model is perturbatively UV asymptotically free (in the coupling constant g defined by
β = 1/g2) and believed to be massive i.e. to have a finite correlation length (here one would
consider Σ = C).

It was observed in [60, 50] that one can add to this action another term sharing the global
G × G symmetry given by left and right actions by G. This term is of topological nature: it
is defined by picking a 3-manifold B with ∂B = Σ and extending g to B: g̃|Σ = g and then
setting

Stop(g) = − i

12π

ˆ
B

Tr(g̃−1dg̃)∧3 . (8)

For another such extension it turns out the change of action will be given by 2πin with n an
integer and therefore e−kStop(g) is well defined for k ∈ Z, and hence we may add the term
kStop(g) to the Wess-Zumino action and preserve the G×G symmetry. Furthermore, miracu-
ously taking β = k the theory is conformally invariant and the resulting WZNW model is a
conformal field theory. Hence one is led to study the path integral

〈F 〉 =

ˆ
F (g)e−kS(g)DG

10 IAMP Bulletin, January 2023
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with the action functional

S(g) = SWZ(g) + Stop(g). (9)

The topological nature of the model called Krzysztof’s attention since it fit well with what he
had done in his thesis on the canonical formalism in field theory.

To obtain the quantum Hilbert space for the model from the Euclidean path integral one
takes Σ the Riemann sphere Ĉ = C ∪ {∞}. The classical configuration space for a theory
where the field takes values in a group G would then be a space of field configurations on
the circle T = {|z| = 1} i.e. the loop group LG = {γ : T → G} and upon the standard
(Osterwalder-Schrader) quantisation the physical Hilbert space would be a suitable L2 space
on LG i.e. the Schrödinger wave functions ψ would be functions ψ : LG→ C. Krzysztof then
observed [28] that due to the topological term in the WZNW model it is more natural to use
a holomorphic polarisation to quantise the theory whereby the wave functions turn out to be
holomorphic sections of a complex line bundle L over the complexification LGC of LG.

In [22] a concrete description of this line bundle was given by using the action functional
(9). Indeed the standard construction in a CFT with a local action functional S(g) of these wave
functions is to consider functionals F depending on the field g through its restriction g|D to the
unit disk D which would give rise to the state

ψ(γ) =

ˆ
g|∂D=γ

F (g)e−kSD(g)Dg , (10)

where the integral is over fields g on D with fixed boundary condition and SD the restriction of
the local action functional to D. For WZNW, however, it is not clear how to do this restriction
due to the topological term. A natural idea is to extend γ from ∂D to γ̂ : Dc → G thereby
obtaining an extension ĝ : Ĉ → G of g and then using S(ĝ) in (10) in place of SD(g). To
see how this definition depends on the extension γ̂ one uses the fundamental identity due to
Polyakov and Wiegman valid on all closed surfaces:

SΣ(gh) = SΣ(g) + SΣ(h)− ΓΣ(g, h) , (11)

where

ΓΣ(g, h) =
i

2π

ˆ
Σ

Tr[g−1∂̄g ∧ h∂h−1]. (12)

Thus, for another extension γ̂′ = γ̂h where h|T = 1we have

ψ(γ̂′) = e−kSĈ(h)+kΓDc (γ̂,h)ψ(γ̂).

In other words, we may identify the bundle L as

L = C×Map(Dc → GC)/Map1(Dc → GC) ,

where Map is a suitable space of smooth maps and Map1 smooth maps with h|T = 1 and the
equivalence is

(λ, g) ∼ (ekSĈ(ĥ)−kΓDc (g,h)λ, gh)
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where ĥ is extension of h by 1 to D.
Of course the justification of this bundle structure using the path integral is non-rigorous

due to the lack of mathematical definition of the path integral but one can gain insight into the
WZNW model by studying this bundle. First of all it has a group structure

(λ, g) ◦ (λ′, g′) = (e−kΓ(g,g′)λλ′, gg′) , (13)

which indeed can be checked to project to the quotient. This allows one to identify the set
L̂G

C
:= {L \ zero section} as the central extension by C \ {0} of the loop group LGC.

Consider now the space H of holomorphic sections ψ of L. By (13) the group L̂G
C

acts on L
from left and from right. We can then define an action of L̂G

C × L̂GC
onH by

`(ĝ1)r(ĝ2)ψ(g) = ĝ1 ◦ ψ(g−1
1 gg∗2

−1) ◦ ĝ∗2.

The infinitesimal form of this action can be calculated and it gives rise to a representation of
two Kac-Moody algebras of level k on H. In [22] the reduction of this representation was
studied. The cocycle Γ(g, h) vanishes for g holomorphic or h antiholomorphic. This means
that the subgroups L± of LGC consisting of loops γ that have an (anti) analytic extension to Dc

are embedded in L̂G
C

and it is natural to look for highest weight states under their action. In
[22] it was shown that precisely the so called integrable highest weight states are inH therefore
proving thatH contains the (finite) direct sum of the integrable highest weight representations.
In [23] this result was extended to all simple Lie Groups.

In conformal field theory to each highest weight state ψi there corresponds a random field
φi(x), called the primary field, and in the path integral formulation (10) this field is a function
φi(x; g) of g so that the state ψ corresponds to the insertion of F (g) = φi(0; g). Then one would
be interested in constructing the correlation functions of these fields on all closed surfaces Σ:

〈φi1(x1) . . . φim(xm)〉Σ :=

ˆ ∏
j

φij(xj; g)e−kSΣ(g)Dg . (14)

Now formally one can perform this path integral by cutting out discs around the points xi ∈ Σ,
integrating over fields inside and outside the discs and finally over the fields on the boundaries2.
Then one ends up with

〈φi1(x1) . . . φim(xm)〉Σ := 〈⊗jψij |AΣ̃〉 , (15)

where Σ̃ = Σ \ ∪iDi and the amplitude

AΣ̃(γ1, . . . , γm) =

ˆ
g|∂Di=γi

e−kSΣ̃(g)Dg (16)

is viewed as a section of ⊗L and 〈·|·〉 in (15) is an invariant scalar product on L̂G
m

. The above
results lead one conjecture that such a scalar product exists and the Hilbert space decomposes

2For an example of rigorous construction of this in the context of a the Liouville theory see [47]
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into a direct sum ⊕iMi ⊗ M̃i whereMi,M̃i are the integrable highest weight modules. One
could then address the conformal bootstrap approach to evaluate (16) by cutting the surface Σ̃
into a union of pairs of pants and factoring the path integral along their boundary circles and
using the resolution of identity with the above direct sum decomposition eventually reducing
the correlator (15) to a product of three point functions of primary fields and representation
theoretic objects (conformal blocks). In the absence of rigorous theory of the path integral
Krzysztof however observed that there is an alternative route to arrive at (conjectural) exact
expressions of the WZNW correlation functions, to which we now turn.

The path to WZNW correlation functions goes via the so-called coset construction of God-
dard, Kent and Olive [45]. These authors observed that given a compact Lie group G and a
subgroup H one can obtain representations of Virasoro algebras by decomposing the represen-
tations of the group G Kac-Moody algebra into factor representations of Kac-Moody algebra
based on the subgroup H . In particular representations occurring in the minimal models (e.g.
the Ising model) can be obtained by taking G = SU(2) × SU(2) and H the diagonal SU(2)
subgroup. Hence the question arises whether there exists a full conformal field theory corre-
sponding to such pair and what is its connection to the WZNW model.

This question was addressed in [39] where a path-integral construction of the coset CFTs
was accomplished. One takes as a starting point the following action functional

S(g, A) = S(g) +
i

2π

ˆ
Σ

Tr[A10g−1∂̄g + g∂g−1A01 + gA10g−1A01 − A10A01] , (17)

where A = A10 + A01 is a H valued gauge field with A10 and A01 the dz and dz̄ parts respec-
tively. It turns out the integral over A is exactly (formally) computable. In the simplest case
of Σ = Ĉ the trick is to parametrise A by h : Ĉ → H by A01 = h−1∂̄h whereby using the
Polyakov-Wiegman formula (12) the action becomes

S(g, A) = S(hgh∗)− `S(hh∗).

Here ` is an integer (the Dynkin index of imbedding ofH to G). The Jacobean J of the change
of variables A → h is given in terms of a determinant detD∗ADA where DA = ∂̄ + [A01, ·]
which again (by a chiral anomaly calculation) is formally explicitly given by

J ∝ exp(2hvkS(hh∗)) ,

where hv ∈ N (the dual Coxeter number of H). Hence upon a final change of variables g →
h−1gh∗−1 the partition function factorisesˆ

e−kS(g,A)DgDA =

ˆ
e−kS(g)Dg

ˆ
ek̃S(hh∗)Dh

to a product of the group G WZNW partition function and the partition function of a QFT of a
sigma model on the symmetric space HC/H; we denoted k̃ = `k + 2hv.

Now the remarkable fact is that the h integral can be explicitly calculated by Gaussian
integration. Let us consider the simplest case of H = SU(2). Using a Borel decomposition
h = bk where b is upper triangular and k ∈ SU(2) the action becomes

S(hh∗) = − 1

π

ˆ
(∂zφ∂z̄φ+ (∂z + ∂zφ)v̄(∂z̄ + ∂z̄φ)v)d2z ,
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and the Haar measure becomes dh = dφd2vdk. φ ∈ R and v ∈ C are global coordinates of the
three dimensional hyperbolic space SL(2,C)/SU(2). Thus the v integral is indeed Gaussian
producing a functional determinant which quite miraculously turns out to be Gaussian in φ
thereby reducing φ also to the Gaussian free field! In [39] it was shown that a similar reduction
to Gaussian integrals generalises to all compact groupsG by using again a Borel decomposition
of GC = BG where the Borel subgroup B is the analog of the upper triangular matrices.
Performing these calculations on surfaces of genus > 0 results in to a coupling between the G
and the H QFTs via nontrivial moduli of flatH connections Ã in the parametrisation

A01 = Ã01 + h−1∂̄h. (18)

This way in [39] it was shown the partition function on the torus is given as a sesquilinear
combination of the so called branching functions of the embedding of the two Kac-Moody
algebras as predicted by [45].

The action (17) with A now a G connection serves as a starting point in the study of the
WZNW correlation functions (14). Let DR(g) be the matrix of an irreducible representation of
G acting in the vector space VR. Then we are interested in the correlation functions

Γ(z,R, A) =

ˆ
⊗iDRi(g(zi))e

−kS(g,A)DG ∈ ⊗iVRi ⊗ VR̄i , (19)

where R̄ is the complex conjugate representation. For A = 0 these are just the correlation
functions of primary fields of the WZNW model. Using once again the Polyakov-Wiegman
formula (12) one derives the global Ward identity

Γ(z,R, hA) = ekS(h−1h∗−1) ⊗i DRi(h(zi))⊗DR̄i(h(zi))Γ(z,R, A). (20)

This and the expectation that in a CFT the correlations factorise to sums of products of holo-
morphic and antiholomorphic functions motivate the definition [29] of a Kac-Moody block as
a holomorphic map A01 → γ(A01) ∈ ⊗iVRi satisfying

γ(hA01) = eS(h−1, A01) ⊗i DRi(h(zi))γ(A01). (21)

This equation defines a spaceW (Σ, z,R) of holomorphic sections of a vector bundle with fiber
⊗iVRi over the set of gauge orbitsA i.e. the set of connectionsA01 modulo theGC chiral gauge
transformations. This space of sections is finite dimensional and it is also the space Schrödinger
states of the three dimensional Chern-Simons topological QFT [40]. The latter is a theory of a
gauge field a on a 3-manifoldM with action

S(a) =
k

4π

ˆ
M
Tr(a ∧ da+ 2

3
a ∧ a ∧ a).

TakingM = Σ × R with Σ a closed surface the quantisation of this theory [61] yields wave
functions A01 ∈ A → ψ(A01) satisfying (21). To make this a Hilbert space we need a scalar
product and this is formally given by

‖ψ‖2 =

ˆ
A
|ψ(A01)|2e− ik

2π

´
Tr(A01)∗∧A01

DA.
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Using the parametrisation (18) and the transformation law (21) this integral may be expressed
[29] explicitely in terms of h and then computed in terms of iterated Gaussian integrals and
eventually reduced to finite dimensional integrals involving the covariances of the Gaussian
fields.

This scalar product is basic input of the Chern-Simons QFT but what is its role in the
WZNW theory? This was addressed by Krzysztof in [29]. His answer to this was simple and
ingenious. Let eA be the evaluation map γ ∈ W (Σ, z,R)→ γ(A01). Then

Γ(z,R, A) = ‖eA‖2e
ik
2π

´
Tr(A01)∗∧A01

,

where the norm is defined by duality. Hence in particular Γ(z,R, o) = ‖e0‖2 and this expres-
sion is given in terms of the GC/G model and therefore the path integral is computable by
Gaussian integration. The end result is expressed in terms of finite dimensional integrals.

Working all this out for general surface Σ is a formidable tour de force carried out in [30].
There the general convergence analysis of the finite dimensional integrals was left open but
strong arguments were given that they converge if and only if the fusion rules of WZNW model
are satisfied. As for the questions of rigour one can not do better than cite Krzysztof: ”This is
a non-rigorous work in its manipulation of formal functional integrals which lead, in the end,
to a chain of Gaussian integrations. Handling these integrals required, nevertheless, careful
treatment. As a result, the paper employs relatively sophisticated mathematical tools. It may
be viewed as a piece of ”theoretical mathematics” in the sense of A. Jaffe and F. Quinn: it
uses formal functional integral to extract an interesting mathematical structure which should be
submitted now to rigorous analysis”.

The GC/G model has also independent interest in several applications. For G = SU(2),
GC/G = H3, the 3-dimensional hyperbolic space, and the CFT provides an example of the
AdS/CFT correspondence [55, 57]. Finally a further coset by R i.e. SL(2,C)/(SU(2)× R) is
the simplest model of strings moving in (Euclidean) black hole geometry. Another interesting
direction is the relation between the H3 CFT and the Liouville CFT. The conjectured correlation
functions of the H3 CFT on Ĉ can be expressed in terms Liouville theory correlation functions
[58, 49]. This conjecture has interesting implications related to the analytic Langlands corre-
spondence [59, 20] in the semiclassical limit of the Liouville CFT which corresponds to the
critical level k → 2 limit of the H3 theory.

Hence, I think it would be important if Krysztof’s call for rigorous analysis were picked up
by mathematical physicists.

3 Turbulence
After his long project on WZNW models in mid 90’s Krzysztof was looking for new challenges
and a change of topics. This came about at a semester on PDEs I organised at the Mittag-Leffler
Institute in the fall 1994. Present in that semester were Uriel Frish and Itamar Procaccia and
their debates on the Kraichnan model served as an inspiration for Krzysztof and me to venture
into the field of turbulence.

In 1941 A.N. Kolmogorov argued that in fully developed turbulence a range of spatial scales
exists where the velocity field exhibits approximate scale invariance properties. Furthermore
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this range tends to infinity as the IR and UV cutoffs provided by the scale of energy input and
viscous dissipation are taken to infinity and zero respectively and in that limit a fully scale in-
variant stationary behaviour emerges. Later experimental and numerical studies gave evidence
that there are corrections to the scaling exponents predicted by Kolmogorov and this posed a
theoretical challenge to explain the observed anomalous scaling. While quantitative theoretical
arguments for Navier-Stokes turbulence have been hard to come up with, in 1994 it was ob-
served by several people [52, 53, 54] that a simple advection equation introduced in 1968 by
R. Kraichnan [51] would serve as a toy model to study the violation of scale invariance.

The Kraichnan model is a special case of an advection equation describing the transport of
a scalar quantity T (t,x), (t,x) ∈ R×Rd (e.g. temperature of a fluid or an impurity concentra-
tion) by a velocity field v(t,x):

∂tT = κ∆T + v · ∇T + f. (22)

Here κ is a diffusion coefficient and f(t,x) is a source term for T . For transport in real fluids
v would be a solution to the Navier-Stokes equations.

In the fully developed turbulence situation the universal scale invariance properties of v are
expected to show up in the statistics of the velocity differences at nearby spatial locations x,y:
let δrv = n · (v(t,x)− v(t,y)) where n = (x− y)/r and r = |x− y|. Kolmogorov’s scaling
theory predicts that the moments of the δrv, the velocity structure functions, scale as

Sn(x) := 〈(δrv)n〉 = Cnr
n/3(1 +O(ρ/r) +O(r/R)) , (23)

where 〈·〉 is an ergodic average. Here ρ is the scale where the viscous forces act and ρ → 0
in the limit of vanishing viscosity of the fluid. The forcing scale R is the characteristic scale
(e.g. size of an obstacle to the flow) where the external force acts. Thus in the so called inertial
range of scales ρ << r << R the theory predicts scale invariance of the velocity differences.
Experimentally the prediction (23) appears to be violated for n > 3 and one rather expects to
have in the limit of vanishing viscosity

Sn(x) = Dn(R
r
)γnrn/3(1 +O(r/R)) (24)

with γn > 0 for n > 3. The theoretical explanation of this violation is one of the major open
problems of turbulence.

In the Kraichnan model v is taken random with Gaussian statistics sharing some of the
above features of a turbulent velocity field. v is incompressible i.e. ∇ · v = 0 with mean zero
and covariance

〈vi(t,x)vj(s,y)〉 = Dij(x− y)δ(t− s)
where the spatial part has Fourier transform

D̂ij(k) = (δij − k̂ik̂j)|k|(ξ−d)χρ,R(|k|) , (25)

where k̂ = k/|k|, χρ,R is a smooth indicator of the interval [R−1, ρ−1], and ξ > 0. The first
factor on the RHS implies v is incompressible. Writing

Dij(x− y) = Dij(0) + dij(x− y)
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one has in the limit ρ→ 0 that

Dij(0) = c1R
ξδij (26)

blows up as as R→∞, whereas the limit

lim
R→∞

lim
ρ→0

dij(x) = c2((2 + ξ)δij − ξx̂ix̂j)|x|ξ (27)

exists, leading to

〈δrv(t)δrv(s)〉 = c3r
ξδ(t− s)

in that limit. Thus the Kraichnan velocity field mimics turbulent velocities with the scaling
exponent ξ as a parameter. The property of decorrelation in time is of course a drastic simplifi-
cation and a reason why the model is tractable.

Finally, f(t,x) in (22) is a Gaussian source in large spatial scales ∼ L with

〈f(t,x)f(s,y)〉 = CL(x− y) δ(t− s)

and CL(x) = χ( |x|
L

) with χ a smooth bump around 0.
The equation (22) is a linear stochastic PDE for T with dissipation and it has a stationary

state whose correlation functions we would like to study. In particular, in parallel to the Kol-
mogorov theory of turbulence we are interested in universal properties of this state in the limit
ρ, κ → 0 and R,L → ∞. Universality here means independence of the details of the forcing
covariance C. Also in parallel to the Kolmogorov theory the structure functions

Sn(r) := 〈(T (x)− T (y))n〉 (28)

with r = |x−y| are expected to exhibit universal scaling properties. Indeed if one argues along
the lines of the Kolmogorov theory one predicts simple scaling Sn(r) = cnr

n(2−ξ).
In our work [38] it was shown this simple scaling does not hold and the structure functions

exhibit anomalous scaling as in (24) once all the cutoffs except L are removed:

Sn(r) = En(L
r
)δnrn(2−ξ)(1 +O(r/L)) (29)

with a nontrivial set of exponents δn > 0 for n > 2 that are universal whereas the constants En
are not. Thus the anomalous scaling is present in the statistics of the scalar even though the the
advecting velocity field does not have this property. The result in [38] is based on a perturbative
argument in the parameter ξ close to zero. In [15] another perturbative calculation of δn was
given where the small parameter is 1/d where d is the spatial dimension.

The argument in [38] is based on exact partial differential equations satisfied by the the
correlation functions of T obtained by applying Ito formula. For the one-point function the
equation reads

∂t〈T (t,x)〉 = (κ+ 1
6

TrD(0))∆〈T (t,x)〉 , (30)
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so that the diffusion constant κ gets renormalised by the eddy diffusivity 1
6

TrD(0), which
by (26) diverges as the IR cutoff of the velocity field R → ∞. Hence the large scales of
the velocity field enhance strongly the diffusivity of the scalar. For the two-point function
G2(t,x−y) := 〈T (t,x)T (t,y)〉 this eddy diffusivity drops out (due to translation invariance),
and we get

∂tG2(t,x) = M2G2(t,x) + CL(x) (31)

with the elliptic differential operator

M2 = 2κ∆ + dij(x)∂i∂j , (32)

so that the stationary solution is G2,L(x) with

G2,L = M−1
2 CL (33)

The spatial homogeneity of the dij(x) in (27) implies this solution has a scaling regime rκ <<
r << L where rκ ∼ κ1/ξ tends to zero as κ→ 0. One obtains in that limit

G2,L(x) = aL2−ξ +
1

2
b|x|2−ξ(1 +O(|x|/L))

where the constant b is universal, proportional to the energy dissipation rate (see below). Hence,
the two-point function is sensitive to the large scales of the advecting velocity field but the two-
point structure function S2(x) = 〈(T (x)− T (0))2〉 has a universal limit as L→∞:

S2(x) = b|x|2−ξ.

The next nonzero correlation function at stationarity is the four-point function

〈T (t,x1), . . . T (t,x4)〉 := G4(t,x).

Again by the Ito formula

∂tG4(t,x) = M4G4(t,x) +G2(t,x1 − x2)CL(x3 − x4) + 2 pairings,

which leads to the stationary state

G4,L = M−1
4 (G2,L ⊗ CL + 2 pairings). (34)

Here M4 is the elliptic differential operator

M4 = −(
4∑
i=1

κ∆i +
∑
i<j

d(xi − xj) · ∇xi∇xj) .

Again, as L → ∞ we expect the leading term in (34) to be a non-universal constant not
contributing to the structure function, but now the corrections are much more tricky to find. In
[38] it was shown that the leading corrections contributing to Sn are zero modes of the operator
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Mn with κ = 0. This operator is singular elliptic with symbol of of spatial homogeneity 2− ξ
and the relevant zero modes are homogenous functions of degree (2 − ξ)n − δn in x1, . . . ,xn
with nonzero δn for n > 2. In [38] and [10] the δn were computed perturbatively in the Hölder
exponent ξ. For ξ = 0 the operator Mn is Laplacian whose homogenous zero modes are
polynomials and δn = 0. For ξ > 0 δn were obtained by degenerate perturbation theory as

δn = N(N−2)
2(d+2)

ξ +O(ξ2).

It must be stressed that even this perturbative analysis is not rigorous and a calculation (not
to mention a proof) of δn 6= 0 for all ξ ∈ (0, 2) would be very interesting. For ξ = 2 the
Kraichnan velocity becomes smooth and surprisingly the stationary state of the scalar is non-
trivial but explicitly computable and related to a quantum mechanical problem involving the
Calogero-Sutherland Hamiltonian [8].

In [8] the above analysis was interpreted in terms of the motion of Lagrangian particles in
Rd corresponding to the advection equation (22). For n particles with positions xi(t) ∈ Rd the
stochastic flow is given by

dxi(t) = v(t,xi(t))dt+ κ db(it) ,

where bi(t) are independent Brownian motions. For ρ > 0, v is smooth and the transition
probability kernel P (x,y, t,v) (where x = (x1, . . . ,xn)) of this SDE is defined and we have

〈P (x,y, t,v)〉 = e−tMn(x,y) , (35)

where the expectation is over v. The RHS Lagrangian has a limit as ρ → 0 and as κ → 0.
Furthermore the result is continuous in x,y (in fact differentiable [48]). On the other hand it
is formally the expectation over the velocity ensemble of the transition kernel of the ordinary
differential equation

ẋi(t) = v(t,xi(t)), xi(0) = yi .

For ρ > 0, v is smooth a.s. and the solution of this equation is unique given the initial condition
so if for some i, j we have yi = yj then 〈P (x,y, t,v)〉 would be zero if xi 6= xj . However,
if ρ = 0 the RHS of (35) does not satisfy this property and we conclude that the Lagrangian
trajectories once the cutoffs are removed are not unique and in fact we expect them to be
stochastic for a typical realisation of the vector field v. Note that since the velocity field is not
Lipschitz in its spatial dependence non-uniqueness of solutions is to be expected. Nevertheless
the lack of uniqueness here is very striking. This phenomenon has been termed as spontaneous
stochasticity and is believed to be an important property of fully developed turbulence. The
Kraichnan model is the first nontrivial case where this phenomenon has been established.

Refinement of the analysis of the zero modes of the operators Mn led to a novel picture of
the Lagrangian flow in [8]. First, the zero modes f(x1, . . . ,xn) are obviously conserved by the
average flow since e−tMnf = f . Hence Et,yf = f(y). In [8] an infinite family of homogenous
slow modes f of the flow was uncovered where Et,yf = tσ/(2−ξ)f(y) with σ the homogeneity
degree of f . These functions have super-diffusive growth and they were shown to control the
asymptotic probabilities of the Lagrangian particles coming together.
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Returning to the advection equation (22) and defining ”energy” E(t,x) = 1
2 〈T (t,x)2〉 Ito

formula gives

Ė = −κ〈(∇T )2〉+
1

2
C(0) ,

so that we have input of energy 1
2C(0) into the system and its dissipation by the diffusion. In a

stationary state they balance: κ〈(∇T )2〉 = 1
2C(0). In particular the dissipation κ〈(∇T )2〉 does

not vanish as κ → 0, a phenomenon coined as dissipative anomaly. Looking at this energy
balance scale by scale [38] reveals a constant flux of energy from large scales L where the
energy is pumped into the system to the dissipation scale ∼ κ1/ξ where it is dissipated. This is
the same phenomenology as one expects in Navier-Stokes turbulence.

The discussion so far dealt with incompressible velocities. One may include compressibility
in the Kraichnan model by adding to the prefactor in (25) a term λk̂ik̂j with λ > 0. In [43]
an interesting phase transition in the parameter λ was uncovered. For small λ the explosive
separation of the Lagrangian trajectories persists but at strong compressibility the trajectories
implosively collapse together. Correspondingly at weak compressibility, the scalar exhibits the
above direct cascade of the energy to small scales, anomalous scaling of structure functions and
dissipative anomaly. In contrast at strong compressibilty one has an inverse cascade of energy
to large scales. The anomalous scaling, present in scales smaller than L is absent in larger
scales and the dissipative anomaly is absent.

4 Later work

In these notes I have covered some of the work Krzysztof did before 2000. The bulk of it was
done while he was at IHES during 1981-2001. In 2001 he moved to ENS Lyon where he started
to have more PhD students and also to teach, both of which he had been missing at IHES. Dur-
ing this period he continued working on WZNW models and turbulence but remarkably he also
embarked on new projects in quite different fields. In WZNW models he extended the previous
work to boundary CFT setup i.e. to a formulation of the theory on a surface Σ with a boundary
and equipped with conformal boundary conditions. The intricacies of the topological term in
the action had been addressed by him already much earlier in [28] where a cohomological de-
scription was given. A geometrical reformulation of this in the language of bundle gerbes was
given in [42]. Surprisingly, he found use of this formalism later in the construction of topolog-
ical invariants for condensed matter systems [13, 14]. From his work on turbulence Krzysztof
was led to other questions in non-equlibrium systems. In [16] an elegant and comprehensive
approach to various fluctuation relations for classical nonequilibrium dynamics described by
diffusion processes is presented. These relations compare the statistics of fluctuations of the
entropy production or work in the original process to the similar statistics in the time-reversed
process. The origin of a variety of fluctuation relations is traced to the use of different time re-
versals. Again Krzysztof approached these questions with his characteristic thoroughness and
this led even to an experimental work where he was heavily involved [46]. There a modified
fluctuation-dissipation-theorem was experimentally verified by studying the position fluctua-
tions of a colloidal particle whose motion is confined in a toroidal optical trap. The theoretical
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interpretation of this setup was an equilibrium-like fluctuation-dissipation relation in the La-
grangian frame of the mean local velocity of the particle. Finally Krzysztof embarked on yet
another new project where he was able to combine his mastery of conformal field theory and
non-equilibrium physics to the study of quantum non-equilibrium systems: heat transport in
the Luttinger model [41] and full-counting statistics of energy transfers in unitary Conformal
Field Theories [31]. This project was interrupted by his untimely death in January 2022. His
passing away is a big loss to the mathematical physics community and a personal loss to many
of us, his friends and colleaugues.
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[28] K. Gawȩdzki, Topological actions in two-dimensional quantum field theories, In: ’t Hooft,
G. , Jaffe, A. , Mack, G. , Mitter, P. K. , Stora, R. (eds) Nonperturbative Quantum Field
Theory. Nato Science Series B:, vol 185, Springer, New York, NY (1988)
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Nikita Nekrasov Awarded 2023 Dannie Heineman Prize for

Mathematical Physics

WASHINGTON, Nov. 10, 2022 – AIP and the American Physical Society are pleased to an-
nounce Nikita Nekrasov as the recipient of the 2023 Dannie Heineman Prize for Mathemati-
cal Physics “for the elegant application of powerful mathematical techniques to extract exact
results for quantum field theories, as well as shedding light on integrable systems and non-
commutative geometry.”

The annual award acknowledges significant contributions to the field of mathematical physics
and will be presented at an upcoming APS meeting.

“We are so pleased to recognize Nikita Nekrasov with this award,” said Michael Moloney,
CEO of AIP. “His work has taken abstract principles in mathematics and proved them essential
for theoretical physics, building upon our fundamental knowledge of how the universe works –
the pondering on which has been an inspiration to generations of scientists.”

Nekrasov, a professor at Stony Brook University’s Simons Center for Geometry and Physics
and Yang Institute for Theoretical Physics, used techniques from topology to solve important
problems in theoretical physics, namely, exactly calculating the effects of the strong force hold-
ing together nuclei.

Complex problems in quantum physics are often broken into two pieces: an explicit solu-
tion of a simpler system, and the analysis of a “perturbation” that reflects the small difference of
a realistic model from that simple system. As an example, in a simplified picture, freely prop-
agating particles occasionally meet and interact with other particles along their way. Having
many successive interactions is less likely, which makes the perturbation terms mathematically
manageable. However, some natural phenomena, such as the strong force, do not follow this
rule and require a different approach.
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“One needs better understanding of how to account for the effects of strong force,” said
Nekrasov. “I found a class of theories for which this can be done exactly, but you have to bring
in a novel type of mathematics: topology and non-commutative geometry.”

The mathematics can also be used for exactly solvable models describing many-body in-
teractions, be it planets in the solar system, cold atoms, or electrons in a quantum Hall effect.
Nekrasov discovered that, under the assumption of supersymmetry, the mathematics of strong
interactions is the same as the mathematics describing many particles living on a line and in-
teracting with some repulsive force.

“Instead of trying to visualize the quarks and gluons inside an atomic nucleus, which we
cannot see directly, you could set up a laboratory with quantum wires, do some measurements,
and then try to translate that result to the world of elementary particles,” Nekrasov said. “That’s
the amazing fact about physics and mathematics. There are unexpected connections between
different fields.”

A French-Russian national, Nekrasov grew up in Russia, where he became hooked on
string theory and mathematical physics after reading a Scientific American article by Professor
Michael Green (recipient of the 2002 Dannie Heineman Prize for Mathematical Physics). He
earned his doctorate at Princeton University and completed a postdoctoral fellowship at Har-
vard University as a Junior Fellow at the Harvard Society of Fellows. After briefly returning to
Princeton University as a Dicke Fellow, he became professor at the Institut des Hautes Études
Scientifiques in France. Since 2013 he has been a professor at the Simons Center for Geometry
and Physics and Yang Institute for Theoretical Physics at Stony Brook University.

“It’s an honor to receive this award, and in some sense, it’s a way to shake hands with a lot
of my heroes, the people who inspired me in my work,” said Nekrasov.

Nekrasov hopes to continue connecting abstract mathematics to theoretical physics and is
currently interested in finding applications of quantum field theory to number theory.

ABOUT THE HEINEMAN PRIZE

The Heineman Prize is named after Dannie N. Heineman, an engineer, business executive, and
philanthropic sponsor of the sciences. The prize was established in 1959 by the Heineman
Foundation for Research, Education, Charitable and Scientific Purposes, Inc.The prize will be
presented by AIP and APS on behalf of the Heineman Foundation at a future APS meeting.
A special ceremonial session will be held during the meeting, when Nekrasov will receive the
$10,000 prize. http://www.aps.org/programs/honors/prizes/heineman.cfm

ABOUT AMERICAN INSTITUTE OF PHYSICS

The American Institute of Physics (AIP) is a 501(c)(3) membership corporation of scientific
societies. AIP pursues its mission – to advance, promote, and serve the physical sciences for
the benefit of humanity – with a unifying voice of strength from diversity. In its role as a
federation, AIP advances the success of its Member Societies by providing the means to pool,
coordinate, and leverage their diverse expertise and contributions in pursuit of a shared goal of
advancing the physical sciences in the research enterprise, in the economy, in education, and in
society. In its role as an institute, AIP operates as a center of excellence using policy analysis,
social science, and historical research to promote future progress in the physical sciences.
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ABOUT AMERICAN PHYSICAL SOCIETY

The American Physical Society is a nonprofit membership organization working to advance
and diffuse the knowledge of physics through its outstanding research journals, scientific meet-
ings, and education, outreach, advocacy, and international activities. APS represents more than
50,000 members, including physicists in academia, national laboratories, and industry in the
United States and throughout the world. https://www.aps.org/

For more information, please contact:
Media Services
American Institute of Physics
+1 301-209-3090
media@aip.org

Reprinted with permission from the American Institute of Physics.

Award Deadlines

Nominations for the 2024 Heineman Prize are due by 1 June, 2023.
For more information and instructions go to

https://www.aps.org/programs/honors/prizes/heineman.cfm

Nominations for the IOP Quantum Awards are due by 15 March, 2023.
For more information and instructions go to

https://ioppublishing.org/two-international-quantum-awards-now-open-for-nominations
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Time’s Arrow

Time’s Arrow

Scientific anniversaries

1873. Josiah Willard Gibbs published two foundational works in statistical mechanics.

1873. James Clerk Maxwell published his “Treatise on Electricity and Magnetism.”

1923. Arthur Eddington published “The Mathematical Theory of Relativity.”

Lost luminaries

Howard Weiss, 5 November 2022.

Huzihiro Araki, 16 December, 2022. Araki, the second President of IAMP, will be commemo-
rated in a future issue.

Readers are encouraged to send items for “Time’s Arrow” to bulletin@iamp.org.
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New individual members

IAMP welcomes the following new members

1. PROFESSOR ANDANG SUNARTO, Uversitas Islam Negeri Fatmawati Sukarno Bengkulu,
Indonesia

2. MS. HASNA JABOUR, Université de Paris, France

3. PROFESSOR FEDERICO BONETTO, Georgia Institute of Technology

4. PROFESSOR MUHAMMAD KAMRAN, COMSATS University Islamabad, Wah Campus,
Pakistan

5. DOCTOR JUNCHEN RONG, IHES, Bures-sur-Yvette, France

6. DOCTOR BENOIT SIROIS, Ecole normale superieure, Paris, France

Recent conference announcements

Quantum Transport: Disorder, Interactions and Integrability

January 26-27, 2023, Accademia Nazionale dei Lincei, Roma, Italy.

Universality in Condensed Matter and Statistical Mechanics

February 6-8, 2023, Univ. Roma Tre, Roma, Italy.

Research term on Quantum Information Theory

February 27- March 3, 2023, at Ignacio Cirac Lab - ICMAT Madrid, Spain.

School: Scaling limits and generalized hydrodynamics

March 27- 31, 2023, at Gran Sasso Science Institute, l’Aquila, Italy.

Correlations in Mathematical Quantum Mechanics

June 21-23, 2023, at Copenhagen University.
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News from the IAMP Executive Committee

Seminar series
Mathematical Challenges in Quantum Mechanics - Online Seminars

For an updated list of academic job announcements in mathematical physics and related fields
visit

http://www.iamp.org/page.php?page=page_positions

Michael Loss (IAMP Secretary)
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