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ICMP 2024 in Strasbourg: save the date!

ICMP 2024 in Strasbourg: save the date!

The XXIst International Congress of Mathematical Physics (ICMP) will take
place in Strasbourg, France. It is planned from July 1st to July 6th 2024,
at the Palais des Congrès, the main conference center of the city, near the
European Parliament and well connected with the historical city center. The
Young Researcher Symposium will take place right before, June 28-29th 2024,
at the University of Strasbourg. Save the date!

The website of the conference is already available at

https://icmp2024.org

and will be filled progressively, as more information becomes available.

We hope to see you all in Strasbourg next year!

Nalini Anantharaman, Semyon Klevtsov, Clément Tauber and Martin Vogel

for the local organizing committee.

IAMP Bulletin, July 2023 5

https://icmp2024.org


On the dynamics of dilute gases

On the dynamics of dilute gases

by T. Bodineau, I. Gallagher, L. Saint-Raymond, S. Simonella

The evolution of a gas can be described by different mathematical models depending on
the scale of observation. A natural question, raised by Hilbert in his sixth problem, is
whether these models provide mutually consistent predictions. In particular, for rarefied
gases, it is expected that the equations of the kinetic theory of gases can be obtained from
molecular dynamics governed by the fundamental principles of mechanics. In the case
of hard sphere gases, Lanford [16] has shown that the Boltzmann equation does indeed
appear as a law of large numbers in the low density limit, at least for very short times.
The aim of this paper is to present recent advances in the understanding of this limiting
process.

1 A statistical approach to dilute gas dynamics

1.1 The physical model: a dilute gas of hard spheres

Although at the time Boltzmann published his famous paper [8] the atomic theory was
still rejected by some scientists, it was already well established that matter is composed
of atoms, which are the elementary constituents of all solids, liquids and gases. The
particularity of gases is that the volume occupied by their atoms is negligible as compared
to the total volume occupied by the gas, and there are therefore very few constraints
on their geometric arrangement: the atoms are thus very loosely bound and almost
independent. Neglecting the internal structure of the atoms, their possible organization
into molecules and the effect of long-range interactions, a gas can be represented as a
system formed by a large number of particles that move in a straight line and occasionally
collide with each other, resulting in an almost instantaneous scattering. The simplest
example of such a model consists in assuming that the particles are small identical spheres,
of diameter ε � 1 and mass 1, interacting only by contact (see Figure 1.1). We refer to
this as a gas of hard spheres. This microscopic description of a gas is explicit but very
difficult to use in practice because the number of particles is extremely large, their size is
tiny and their collisions are very sensitive to small shifts (see Figure 1.2). This model is
therefore not efficient to make theoretical predictions. A natural question is whether one
can extract, from such a complex system, less precise but more stable models, suitable for
applications, such as kinetic or fluid models. This question was formalized by Hilbert at
the International Congress of Mathematicians in 1900, in his sixth problem: «Boltzmann’s
work on the principles of mechanics suggests the problem of developing mathematically
the limiting processes, there merely indicated, which lead from the atomistic view to the
laws of motion of continua».

The Boltzmann equation, mentioned by Hilbert and described in more detail below,
expresses that the particle distribution evolves under the combined effect of free transport
and collisions. For these two effects to be of the same order of magnitude, a simple
calculation shows that, in dimension d ≥ 2, the number of particles N and their diameter
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Figure 1.1: At time t, the system of hard spheres is described by the positions (xεk(t))k≤N and
the velocities (vεk(t))k≤N of the N particles’ centers of gravity. The spheres move in a straight
line and when two of them touch, they are scattered according to elastic reflection laws.

ε must satisfy the scaling relation Nεd−1 = O(1), called low density scaling [14]. Indeed,
the regime described by the Boltzmann equation is such that the mean free path, i.e. the
average distance traveled by a particle moving in a straight line between two collisions, is
of order 1. Thus a typical particle should go through a tube of volume O(εd−1) between
two collisions, and on average, this tube should cross one of the N − 1 other particles.
Note that in this regime, the total volume occupied by the particles at a given time is
proportional to Nεd and is therefore negligible as compared to the total volume occupied
by the gas. We speak then of a dilute gas.

1.2 Three levels of averaging

Henceforth it is assumed that the particle system evolves in the unit domain with periodic
boundary conditions Td = [0, 1]d. We consider that the N particles are identical: this is
the exchangeability assumption. The state of the system can be represented by a measure
in the phase space Td × Rd called empirical measure

1

N

N∑
i=1

δx−xiδv−vi ,

where δx is the Dirac mass at x = 0. This measure is completely symmetric (i.e. invariant
by permutation of the indices of the particles) because of the exchangeability assump-
tion. This first averaging is however not sufficient to obtain a robust description of the
dynamics when N is large, because of the instabilities mentioned in the previous section
(see Figure 1.2) which lead to a strong dependence in ε of the particle trajectories.
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Case 1 : transport and collision (the velocities are scattered)

Case 2 : free transport (the particles do not collide)

x1 v1

x2 v2 v′ 2

v′ 1

x2 v2

x1 + O(ε) v1 ε

Figure 1.2: The particles are very small (of diameter ε� 1) and the dynamics is very sensitive
to small spatial shifts. In the first case depicted above, two particles with initial positions x1, x2

and velocities v1, v2 collide and are scattered. In the second case, by shifting the first particle
by a distance 2ε, they no longer collide and each particle keeps moving in a straight line. Thus,
a perturbation of order ε of the initial conditions can lead to very different trajectories.

We will therefore introduce a second averaging, with respect to the initial configu-
rations ; from a physical point of view, this averaging is natural since only fragmentary
information on the initial configuration is available. We therefore assume that the initial
data (XN , VN) = (xi, vi)1≤i≤N are independent random variables, identically distributed
according to a distribution f 0 = f 0(x, v). This assumption must be slightly corrected to
take into account the exclusion between particles: |xi − xj| > ε for i 6= j. This statis-
tical framework is called the canonical setting. It is a simple framework allowing us to
establish rigorous foundations for the kinetic theory, i.e. to characterize, in the large N
asymptotics, the average dynamics and more precisely the evolution equation governing
the distribution f(t, x, v) at time t of a typical particle.

In this paper, our aim is to go beyond this averaged dynamics, and to describe in a
precise way the correlations that appear dynamically inside the gas. Fixing a priori the
number N of particles induces additional correlations, so to circumvent them we introduce
a third level of averaging by assuming that N is also a random variable, and that only
its average µε = ε−(d−1) is determined (according to the low density scaling). To define
a system of initially independent (modulo exclusion) identically distributed hard spheres
according to f 0, we introduce the grand canonical measure as follows: the probability
density of finding N particles of coordinates (xi, vi)i≤N is given by

1

Zε
µNε
N !

N∏
i=1

f 0(xi, vi)
∏
i 6=j

1|xi−xj |>ε , for N = 0, 1, 2, . . . (1)

where the constant Zε is the normalization factor of the probability measure. We will
assume in the following that the function f 0 is Lipschitz continuous, with a Gaussian
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decay in velocity. The corresponding probability and expectation will be denoted by Pε
and Eε.

1.3 A statistical approach

Once the initial random configuration
(
N, (xε0i , v

ε0
i )1≤i≤N

)
is chosen, the hard sphere

dynamics evolves deterministically (according to the hard sphere equations shown in
Figure 1.1), and we seek to understand the statistical behavior of the empirical measure

πεt (x, v) :=
1

µε

N∑
i=1

δx−xεi (t)δv−vεi (t) (2)

and its evolution in time.

A law of large numbers. The first step is to determine the law of large numbers, that is,
the limiting distribution of a typical particle when µε →∞. In the case of N identically
distributed independent variables (ηi)1≤i≤N of expectation E(η), the law of large numbers
implies in particular that the mean converges in probability to the expectation

1

N

N∑
i=1

ηi −−−→
N→∞

E(η) .

We easily show the following convergence in probability

〈πε0, h〉 :=
1

µε

N∑
i=1

h
(
xε0i , v

ε0
i

)
−−−−→
µε→∞

ˆ
f 0h(x, v) dxdv ,

under the grand-canonical measure. The difficulty is to understand whether the initial
quasi-independence propagates in time so that there exists a function f = f(t, x, v) such
that the following convergence in probability holds

〈πεt , h〉 −−−−→
µε→∞

ˆ
f(t, x, v)h(x, v) dxdv (3)

under the grand canonical measure (1) over the initial configurations. The most important
result proving this convergence was obtained by Lanford [16]: he showed that f evolves
according to a deterministic equation, namely the Boltzmann equation. This result will
be explained in Section 2.2.

A central limit theorem. The approximation (3) of the empirical measure neglects two
types of of errors. The first is the presence of correction terms that converge to 0 when
µε → +∞. The second is related to the probability, which must tend to zero, of con-
figurations such that this convergence does not occur. A classical problem in statistical
physics is to quantify more precisely these errors, by studying the fluctuations, i.e. the
deviations between the empirical measure and its expectation. In the case of N inde-
pendent and identically distributed variables (ηi)1≤i≤N , the central limit theorem implies
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that the fluctuations are of order O(1/
√
N), and the following convergence in law holds

true:
√
N
( 1

N

N∑
i=1

ηi − E(η)
)

(law)−−−→
N→∞

N (0,Var(η)),

where N (0,Var(η)) is the normal law of variance Var(η) = E((η−E(η))2). In particular,
at this scale, we find some randomness. Investigating the same fluctuation regime for the
dynamics of hard sphere gases consists in considering the fluctuation field ζεt defined by
duality

〈ζεt , h〉 :=
√
µε

(
〈πεt , h〉 − Eε(〈πεt , h〉)

)
, (4)

where h is a continuous function, and Eε the expectation with respect to the grand-
canonical measure. At time 0, we easily show that, under the grand-canonical measure,
the fluctuation field ζε0 converges in the low density limit to a Gaussian field ζ0 with
covariance

E
(
ζ0(h) ζ0(g)

)
=

ˆ
f 0(z)h(z)g(z) dz . (5)

A series of recent works [4, 5, 6, 7] has allowed to characterize the fluctuation field (4),
and to obtain a stochastic evolution equation governing the limit process. These results
are presented in Section 3.3.

On large deviations. The last question generally studied in a classical probabilistic
approach is that of the quantification of rare events, i.e. the estimation of the probability
of observing an atypical behavior (which deviates macroscopically from the mean). For
independent and identically distributed random variables, this probability is exponentially
small, and it is therefore natural to study the asymptotics

I(m) := lim
δ→0

lim
N→∞

− 1

N
logP

(∣∣∣ 1

N

N∑
i=1

ηi −m
∣∣∣ < δ

)
with m 6= E(η) . (6)

The limit I(m) is called the large deviation functional and can be expressed as the Leg-
endre transform of the log-Laplace transform u : R 7→ logE

(
exp(uη)

)
. To generalize

this statement to correlated variables in a gas of hard spheres, it is necessary to compute
the log-Laplace transform of the empirical measure on deterministic trajectories, which
requires extremely precise control of the dynamical correlations. Note that at time 0,
under a grand canonical measure, we can show that for any δ > 0

lim
δ→0

lim
µε→∞

− 1

µε
logPε

(
d(πε0, ϕ

0) ≤ δ
)

= H(ϕ0|f 0) :=

ˆ (
ϕ0 log

ϕ0

f 0
− (ϕ0 − f 0)

)
dxdv ,

where d is a distance on the space of measures. The dynamical cumulant method intro-
duced in [4, 5] is a key tool for computing the exponential moments of the hard sphere
distribution, thus obtaining the dynamical equivalent of this result in short time. We give
an overview of these techniques in Section 3.
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2 Typical Behaviour: A Law of Large Numbers

2.1 Boltzmann’s amazing intuition

The equation which rules the typical evolution of a gas of hard spheres was heuristically
proposed by Boltzmann [8] about a century before its rigorous derivation by Lanford [16],
as the «limit» of the particle system when µε → +∞. Boltzmann’s revolutionary idea
was to write an evolution equation for the probability density f = f(t, x, v) giving the
proportion of particles at position x with velocity v at time t. In the absence of collisions,
and in an unbounded domain, this density f would be transported along the physical
trajectories x(t) = x(0)+vt, which means that f(t, x, v) = f 0(x−vt, v). The challenge is
to take into account the statistical effect of collisions. As long as the size of the particles is
negligible, one can consider that these collisions are pointwise in both t and x. Boltzmann
proposed a quite intuitive counting:

• the number of particles of velocity v increases when a particle of velocity v′ collides
with a particle of velocity v′1, and takes the velocity v (see Figure 1.1 and (8)) ;

• the number of particles of velocity v decreases when a particle of velocity v collides
with a particle of velocity v1, and is deflected to another velocity.

The probability of these jumps in velocity is described by a transition rate, called the
collision cross section. For interactions between hard spheres, it is given by

(
(v−v1) ·ω

)
+

where v−v1 is the relative velocity of the colliding particles, and ω is the deflection vector,
uniformly distributed in the unit sphere Sd−1 ⊂ Rd.

The fundamental assumption of Boltzmann’s theory is that in a rarefied gas, the
correlations between two colliding particles must be very small. Therefore, the joint
probability of having two pre-colliding particles of velocities v and v1 at position x at
time t should be well approximated by the product f(t, x, v)f(t, x, v1). This independence
property is called the molecular chaos hypothesis. The Boltzmann equation is then the
following

∂tf + v · ∇xf︸ ︷︷ ︸
transport

= C(f, f)︸ ︷︷ ︸
collision

(7)

where

C(f, f)(t, x, v) =
x [

f(t, x, v′)f(t, x, v′1)︸ ︷︷ ︸
gain term

− f(t, x, v)f(t, x, v1)︸ ︷︷ ︸
loss term

] (
(v − v1) · ω

)
+︸ ︷︷ ︸

cross section

dv1dω

with the scattering rules

v′ = v −
(
(v − v1) · ω

)
ω , v′1 = v1 +

(
(v − v1) · ω

)
ω (8)

being analogous to those introduced in Figure 1.1, with the important difference that ω
is now a random vector chosen uniformly in the unit sphere Sd−1: indeed, the relative
position of the colliding particles disappeared in the limit ε → 0. As a result, the

IAMP Bulletin, July 2023 11



On the dynamics of dilute gases

Boltzmann equation is singular because it involves a product of densities at a single point
x.

Boltzmann’s idea of reducing the Hamiltonian dynamics describing atomic behavior
to a kinetic equation was revolutionary and paved the way to the description of non-
equilibrium phenomena by mesoscopic equations. However, the Boltzmann equation (7)
was first strongly criticized because it seems to violate some fundamental physical princi-
ples. It actually predicts an irreversible evolution in time: it has a Lyapunov functional,

called entropy, defined by S(t) := −
x

f log f(t, x, v)dxdv such that
d

dt
S(t) ≥ 0, with

equality if and only if the gas is at thermodynamic equilibrium. The Boltzmann equation
thus provides a quantitative formulation of the second principle of thermodynamics. But
at first glance, this irreversibility seems incompatible with the fact that the dynamics
of hard spheres is governed by a Hamiltonian system, i.e., a system of ordinary differ-
ential equations that is completely reversible in time. Soon after Boltzmann postulated
his equation, these two different behaviors were considered, by Loschmidt, as a paradox
and an obstruction to Boltzmann’s theory. A fully satisfactory mathematical explanation
of this question remained unresolved for almost a century, until the role of probabilities
was precisely identified: the underlying dynamics is reversible, but the description that
is given of this dynamics is only partial and is therefore not reversible.

2.2 Typical behaviour: Lanford’s theorem

Lanford’s result [16] shows in which sense the Boltzmann equation (7) is a good approx-
imation of the hard sphere dynamics. It can be stated as follows (this is not exactly the
original formulation, see in particular section 2.4 below for comments).

Theorem 1.1 (Lanford). In the low density limit (µε →∞ with µεε
d−1 = 1), the empirical

measure πεt defined by (2) concentrates on the solution of the Boltzmann equation (7): for
any bounded and continuous function h,

∀δ > 0, lim
µε→∞

Pε
(∣∣∣〈πεt , h〉 − ˆ f(t, x, v)h(x, v) dxdv

∣∣∣ ≥ δ

)
= 0 ,

on a time interval [0, TL] depending only on the initial distribution f 0.

The time of validity TL of the approximation is found to be a fraction of the average
time between two successive collisions for a typical particle. This time is large enough
for the microscopic system to undergo a large number of collisions (of the order of µε)
but (much) too small to see phenomena such as relaxation to (local) thermodynamic
equilibrium, and in particular hydrodynamic regimes. Physically, we do not expect this
time to be critical, in the sense that the dynamics would change in nature afterwards. In
fact, in practice, the Boltzmann equation is used in many applications (such as space-
craft reentrance calculations) without time restrictions. However, it is important to note
that a time restriction might not be only technical: from a mathematical point of view,
one cannot exclude that the Boltzmann equation presents singularities (typically spatial
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concentrations that would prevent the collision term from making sense, and that would
also locally contradict the low density assumption). At present, the problem of extending
Lanford’s convergence result to longer times still faces serious obstacles.

2.3 Heuristics of Lanford’s proof

Let us informally explain how the Boltzmann equation (7) can be predicted from the
dynamics of the particles. The goal is to transport via the dynamics the initial grand
canonical measure (1) and then to project this measure at time t onto the 1-particle phase
space. We thus define by duality the density F ε

1 (t, x, v) of a typical particle with respect
to a test function h ˆ

F ε
1 (t, x, v)h(x, v) dxdv := Eε (〈πεt , h〉) . (9)

Theorem 1.1 states that F ε
1 converges to the solution to the Boltzmann equation f in the

low density limit. So let h be a regular and bounded function on Td × Rd and consider
the evolution of the empirical measure during a short time interval [t, t + δ]: separating
the different contributions according to the number of collisions, we can write

1

δ

(
Eε
[
〈πεt+δ, h〉

]
− Eε

[
〈πεt , h〉

])
=

1

δ
Eε
[ 1

µε

∑
j

no collision

(
h
(
zεj (t+ δ)

)
− h
(
zεj (t)

))]
+

1

δ
Eε
[ 1

2µε

∑
(i,j)

having 1 collision

(
h
(
zεi (t+ δ)

)
+ h
(
zεj (t+ δ)

)
− h
(
zεi (t)

)
− h
(
zεj (t)

))]
+ . . . .

(10)
To simplify, zεi (t) denotes the coordinates

(
xεi (t), v

ε
i (t)
)

of the i-th particle at time t.
Since the left-hand side of (10) formally converges when δ → 0 to the time derivative
of Eε [〈πεt , h〉], we will analyze the limit δ → 0 of the first two terms of the right-hand
side of (10), which should lead to a transport term and a collision term as in (7). We will
also explain why the remainder terms, involving two or more collisions in the short time
interval δ, tend to 0 with δ (showing that they are of order δ).

Since the particles move in a straight line and at constant speed in the absence of
collision, if the distribution F ε

1 is sufficiently regular, the definition (9) of F ε
1 formally im-

plies that when δ tends to 0, the first term in the right-hand side of (10) is asymptotically
equal to ˆ

F ε
1 (t, z)v · ∇xh(z) dz = −

ˆ (
v · ∇xF

ε
1 (t, z)

)
h(z) dz . (11)

The transport term in (7) is thus well obtained in the limit. Let us now consider the
second term of the right-hand side of (10). Two particles of configurations (x1, v1) and
(x2, v2) at time t collide at a later time τ ≤ t+ δ if there exists ω ∈ Sd−1 such that

x1 − x2 + (τ − t)(v1 − v2) = −εω . (12)

This implies that their relative position must belong to a tube oriented in the v1 − v2

direction of length δ|v1−v2| and width ε. The Lebesgue measure of this set is of the order
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δεd−1|v2−v1| = O(δεd−1) (neglecting large velocities). More generally, a sequence of k−1
collisions between k particles imposes k − 1 constraints of the previous form, and this
event can be shown to have probability less than (δεd−1)k−1 = (δµ−1

ε )k−1 (again neglecting
large velocities). Since there are, on average, µkε ways to choose these k colliding particles,
we deduce that the occurrence of k−1 collisions in (10) has a probability of order δk−1µε.
This explains why the probability of having k ≥ 3 colliding particles can be estimated by
O(δ2) and thus can be neglected in (10).

It remains to examine more closely the collision term involving two particles in (10),
in order to obtain the collision operator C(f, f) of the Boltzmann equation (7). This
term involves the two-particle correlation function F ε

2 . For any k ≥ 1 we define

ˆ
F ε
k (t, Zk)hk(Zk)dZk = Eε

 1

µkε

∑
(i1,...,ik)

hk
(
zεi1(t), . . . , z

ε
ik

(t)
) , (13)

where i1, . . . , ik are all distinct and with Zk = (xi, vi)1≤i≤k. We can then show that in the
limit δ → 0,

∂tF
ε
1 + v · ∇xF

ε
1︸ ︷︷ ︸

transport

= Cε(F ε
2 ) ,︸ ︷︷ ︸

collision at distance ε

(14)

where

Cε(F ε
2 )(t, x, v) =

x [
F ε

2 (t, x, v′, x+ εω, v′1)︸ ︷︷ ︸
gain term

−F ε
2 (t, x, v, x− εω, v1)︸ ︷︷ ︸

loss term

] (
(v − v1) · ω

)
+︸ ︷︷ ︸

cross section

dv1dω .

The key step in closing the equation is the molecular chaos assumption postulated
by Boltzmann, which states that the pre-collisional particles remain independently dis-
tributed at all times so that with the convention (12) fixing the sign of ω, we have

F ε
2 (t, z1, z2) ' F ε

1 (t, z1)F ε
1 (t, z2) , if (v1 − v2) · ω > 0 . (15)

When the diameter ε of the spheres tends to 0, the coordinates x1 et x2 coincide and the
scattering parameter ω becomes a random parameter. Assuming that F ε

1 converges, then
its limit must satisfy the Boltzmann equation (7).

Rigorously establishing the factorization (15) uses a different strategy, elaborated by
Lanford [16], then completed and improved over the years: see the monographs [25,
11, 10]. In the last few years, several quantitative convergence results have been es-
tablished, and the proofs have been extended to the case of somewhat more general
domains, potentials with compact support, or with super exponential decay at infinity:
see [1, 12, 13, 17, 21, 22].

2.4 On the irreversibility

In this paragraph, we will show that the answer to the irreversibility paradox lies in the
molecular chaos hypothesis (15), which is valid only for specific configurations.
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In fact, the notion of convergence that appears in the statement of Theorem 1.1 differs
from the one used in Lanford’s proof: Theorem 1.1 states the convergence of the 〈πεt , h〉
observables, i.e., the convergence in the sense of measures since the test function h must
be continuous. This convergence is rather weak and is not sufficient to ensure the stability
of the collision term in the Boltzmann equation since this term involves traces. In the
proof of Lanford’s theorem, we consider all k-particle correlation functions F ε

k defined
by (13), and show that each of these correlation functions converges uniformly outside
a set Bεk of negligible measure when µε tends to infinity. Thus, the proof uses a much
stronger notion of convergence than that stated in Theorem 1.1. Moreover, the set Bεk

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit>

v2
<latexit sha1_base64="UQ8RRPt2NN02WZInLZUJLciw6fw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0m/1i9X3Kq7AFknXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJZ6VeanhC2ZgOeddSRSNu/Gxx6oxcWGVAwljbUkgW6u+JjEbGTKPAdkYUR2bVm4v/ed0Uwxs/EypJkSu2XBSmkmBM5n+TgdCcoZxaQpkW9lbCRlRThjadkg3BW315nbRqVc+teg9XlfptHkcRzuAcLsGDa6jDPTSgCQyG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAKKI2f</latexit><latexit sha1_base64="UQ8RRPt2NN02WZInLZUJLciw6fw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0m/1i9X3Kq7AFknXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJZ6VeanhC2ZgOeddSRSNu/Gxx6oxcWGVAwljbUkgW6u+JjEbGTKPAdkYUR2bVm4v/ed0Uwxs/EypJkSu2XBSmkmBM5n+TgdCcoZxaQpkW9lbCRlRThjadkg3BW315nbRqVc+teg9XlfptHkcRzuAcLsGDa6jDPTSgCQyG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAKKI2f</latexit><latexit sha1_base64="UQ8RRPt2NN02WZInLZUJLciw6fw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0m/1i9X3Kq7AFknXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJZ6VeanhC2ZgOeddSRSNu/Gxx6oxcWGVAwljbUkgW6u+JjEbGTKPAdkYUR2bVm4v/ed0Uwxs/EypJkSu2XBSmkmBM5n+TgdCcoZxaQpkW9lbCRlRThjadkg3BW315nbRqVc+teg9XlfptHkcRzuAcLsGDa6jDPTSgCQyG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAKKI2f</latexit><latexit sha1_base64="UQ8RRPt2NN02WZInLZUJLciw6fw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0m/1i9X3Kq7AFknXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJZ6VeanhC2ZgOeddSRSNu/Gxx6oxcWGVAwljbUkgW6u+JjEbGTKPAdkYUR2bVm4v/ed0Uwxs/EypJkSu2XBSmkmBM5n+TgdCcoZxaQpkW9lbCRlRThjadkg3BW315nbRqVc+teg9XlfptHkcRzuAcLsGDa6jDPTSgCQyG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAKKI2f</latexit>

v1
<latexit sha1_base64="iwb6UOVPBQMaW/UYkl1KcM9pxNQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0nf65crbtVdgKwTLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjks1IvNTyhbEyHvGupohE3frY4dUYurDIgYaxtKSQL9fdERiNjplFgOyOKI7PqzcX/vG6K4Y2fCZWkyBVbLgpTSTAm87/JQGjOUE4toUwLeythI6opQ5tOyYbgrb68TlpXVc+teg/XlfptHkcRzuAcLsGDGtThHhrQBAZDeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwikjZ4=</latexit><latexit sha1_base64="iwb6UOVPBQMaW/UYkl1KcM9pxNQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0nf65crbtVdgKwTLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjks1IvNTyhbEyHvGupohE3frY4dUYurDIgYaxtKSQL9fdERiNjplFgOyOKI7PqzcX/vG6K4Y2fCZWkyBVbLgpTSTAm87/JQGjOUE4toUwLeythI6opQ5tOyYbgrb68TlpXVc+teg/XlfptHkcRzuAcLsGDGtThHhrQBAZDeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwikjZ4=</latexit><latexit sha1_base64="iwb6UOVPBQMaW/UYkl1KcM9pxNQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0nf65crbtVdgKwTLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjks1IvNTyhbEyHvGupohE3frY4dUYurDIgYaxtKSQL9fdERiNjplFgOyOKI7PqzcX/vG6K4Y2fCZWkyBVbLgpTSTAm87/JQGjOUE4toUwLeythI6opQ5tOyYbgrb68TlpXVc+teg/XlfptHkcRzuAcLsGDGtThHhrQBAZDeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwikjZ4=</latexit><latexit sha1_base64="iwb6UOVPBQMaW/UYkl1KcM9pxNQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2m3bpZhN2J4US+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M7+Z+e8K1EbF6wmnC/YgOlQgFo2ilx0nf65crbtVdgKwTLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjks1IvNTyhbEyHvGupohE3frY4dUYurDIgYaxtKSQL9fdERiNjplFgOyOKI7PqzcX/vG6K4Y2fCZWkyBVbLgpTSTAm87/JQGjOUE4toUwLeythI6opQ5tOyYbgrb68TlpXVc+teg/XlfptHkcRzuAcLsGDGtThHhrQBAZDeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwikjZ4=</latexit>

Fε2(t, x1, v1, x2, v2) ≃ Fε1(t, x1, v1) Fε1(t, x2, v2)

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>

x2
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Fε2(t, x1, v1, x2, v2) ≄ Fε1(t, x1, v1)Fε1(t, x2, v2)
Figure 2.1: In the left figure, particles 1 and 2 will meet in the future; with high probability,
they did not collide in the past and we expect the correlation function F ε2 to factorize in the
µε →∞ limit. In the figure on the right, the coordinates of the particles belong to the bad set
Bε2, which means that they most likely met in the past. In this case, microscopic correlations
have been dynamically constructed and the factorization (15) should not be valid.

of bad microscopic configurations (t, Zk) (on which F ε
k does not converge) is somehow

transverse to the set of pre-collisional configurations (as can be seen in Figure 2.1, two
particles in Bε2 tend to move away from each other so that they are unlikely to collide).
The convergence defect is therefore not an obstacle to taking bounds in the collision term
(correlation functions are only evaluated there in pre-collisional configurations). However,
these singular sets Bεk encode important information about the dynamical correlations: by
neglecting them it is no longer possible to go back in time and reconstruct the backward
dynamics. Thus by discarding the microscopic information encoded in Bεk, one can only
obtain an irreversible kinetic description that is far from describing the full microscopic
dynamics.
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3 Fluctuations and Large Deviations

3.1 Corrections to the chaos assumption

Returning to equation (14) on F ε
1 , we can see that, apart from the small spatial shifts of

the collision term, the deviations of the Boltzmann dynamics are due to the factorization
defect F ε

2 − F ε
1 ⊗ F ε

1 , a geometric interpretation of which is given below.

Let us first describe the geometric representation of F ε
1 . We look at the history of

particle 1? located at position x1∗ with velocity v1∗ at time t, in order to characterize
all initial configurations that contribute to F ε

1 (t, x1∗ , v1∗). The particle 1? has a uniform
rectilinear motion x1?(t′) = x1? − v1?(t− t′) until it collides with another particle, called
particle 1, at a time t1 < t. This collision can be of two types: either a physical collision
(with deflection), or a mathematical artifact arising from the loss term in equation (14)
(the particles touch but are not deflected). From then on, to understand the history of
particle 1?, we need to trace the history of both particles 1? and 1 before time t1. From
time t1, both particles have uniform rectilinear motion until one of them collides with a
new particle 2 at time t2 < t1,... and so on until time 0. Note that between the times of
collision with new particles, the particles can collide with each other: this will be called
recollision. The history of the particle 1? can be encoded using a rooted tree a whose
vertices, which we will call branches, correspond to the different collisions that took place
in the history of 1? and are indexed by the parameters of these collisions. An example
is shown in Figure 3.1. The root of the tree a is indexed by 1?. If n is the total number
of collisions, and 0 < tn < · · · < t1 < t the times of the collisions, one can order the
particles so that at time ti, 1 ≤ i ≤ n, the collision occurs between the i-th particle and
the j-th particle, where j ∈ {1?, 1, . . . , i − 1} (necessarily j = 1? at time t1). Then the
branching of the tree a associated with the i-th collision is indexed by the relation ai = j,
where j ∈ {1?, 1, . . . , i−1}, together with the collision parameters (ti, vi, ωi)1≤i≤n where ωi
is the deflection vector. The tensor product F ε

1 ⊗F ε
1 is then described by two independent

collision trees, with roots 1? and 2?, and n1, resp. n2 branches.

Now consider the second-order correlation function: F ε
2 can be described by a collision

graph constructed from 2 collision trees with roots 1? and 2?, and n1 + n2 branches. The
main difference with F ε

1 ⊗ F ε
1 is that the particles in the 1? and 2? trees may interact.

We can thus decompose the trees constituting F ε
2 into two categories: those such that

there is at least one collision involving a particle from each tree (such a recollision will
be called external), and the others (see Figure 3.2).

Note however that two collision-free trees do not correspond to independent trees,
precisely because of the dynamical exclusion condition. This exclusion condition can
itself be decomposed as 11? 6∼2? = 1 − 11?∼2? (see Figure 3.3), where 11?∼2? means that
there is an overlap at some point between a particle from the 1? tree and a particle from
the 2? tree. This decomposition is a pure mathematical artifact, and the 1? ∼ 2? overlap
condition does not affect the dynamics (the overlapping particles are not deflected).

Let us now define the second-order rescaled cumulant

f ε2 := µε(F
ε
2 − F ε

1 ⊗ F ε
1 ) . (16)

16 IAMP Bulletin, July 2023



On the dynamics of dilute gases

t

t1

t2

t4

t3

0

a1 = 1⋆

a2 = 1
a3 = 1⋆

a4 = 3

1⋆

1⋆

4 3 1 2

Figure 3.1: The history of the particle 1? can be encoded in a tree a, say of size n, whose
root is indexed by 1?. The pseudotrajectory is then prescribed by the collision parameters
(ti, vi, ωi)1≤i≤n.

The previous discussion indicates that this cumulant is represented by trees that are
coupled by external collisions or overlaps (see Figure 3.4). In view of the definition (16)
and the discussion in section 2.3 giving an O(t/µε) estimate of the Lebesgue measure of
configurations giving rise to a collision, one can expect f ε2 to be uniformly bounded in L1

and therefore to have a limit f2 in the sense of the measures. One can prove in addition
that f 2 corresponds to trees with exactly one external recollision or overlap on [0, t]: any
other interaction between the trees gives rise to additional smallness and is therefore
negligible.

Remark 1. The initial measure does not factorize exactly (F ε,0
2 6= F ε,0

1 ⊗ F ε,0
1 ) because of

the static exclusion condition. Thus, the initial data also induce a small contribution to
f ε2 but it is significantly smaller than the dynamical correlations (by a factor ε).

3.2 The cumulant generating function

For a Gaussian process, the first two correlation functions F ε
1 and F ε

2 determine completely
all other k-particle correlation functions F ε

k , but in general part of the information is
encoded in the cumulants of higher order (k ≥ 3)

f εk(t, Zk) := µk−1
ε

k∑
`=1

∑
σ∈P`

k

(−1)`−1(`− 1)!
∏̀
i=1

F ε
|σi|(t, Zσi) ,
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1⋆ 2⋆

Fε2 = +

1⋆ 2⋆

≁

Figure 3.2: F ε2 trees are classified into two categories: those involving an (external) collision
between the 1? and 2? trees, and others for which the particles in the 1? tree are always at
least ε away from those in the 2? tree (which we denote by �).

1*

classificationF2.pdf

Figure 7 Among the pseudoynamics describing F"
2 , we separate those having a recollision between

trees 1⇤ and 2⇤, and those where particles from tree 1⇤ and particles from tree 2⇤ remain at a
distance greater than ", which will be denoted by /
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15 Dynamics of perfect gases
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Remark 2.4. Note that in the limit the deflection parameter !i decouples completely from
the positions. We therefore have a kind of stochastic dynamics, combining free transport and
a random jump process in the velocity space (as described by Kac in [6]). This dynamical
randomness breaks the deterministic reversibility.

3. CORRELATIONS AND FLUCTUATIONS
3.1. What is missing at leading order?
Going back to the equation (2.2) on F"

1 , one can see that up to the small spatial
shifts in the collision term (Enskog corrections to the Boltzmann equation), deviations from
the Boltzmann dynamics are due to the defect of factorization F"

2 � F"
1 ⌦ F"

1 , the so-called
second order cumulant. In terms of our geometric interpretation, this corresponds to pseu-
dotrajectories which are correlated. Recall that F"

2 can be described by collision trees with
two roots and n1 + n2 branchings (see Remark 2.2), while the tensor product is described
by two collision trees with one root, and n1 (resp. n2) branchings. The main di�erence
when building the corresponding pseudodynamics is that particles from tree 1⇤ and 2⇤ will
(or will not) interact. We start by extracting the pseudotrajectories of F"

2 having at least one
recollision between the two trees, which will e called an external recollision : Note that pseu-
dodynamics without external recollision are not yet independent since they precisely satisfy
some dynamical exclusion condition. We will therefore decompose the exclusion condition
11⇤/2⇤ = 1 � 11⇤⇠2⇤. Note that this decomposition is a pure mathematical artefact to compare
pseudodynamics without external recollision with independent pseudodynamics. In partic-
ular, the oevrlapping condition 1⇤ ⇠ 2⇤ does not a�ect the dynamics itself (overlapping
particles are not scattered!). We therefore end up with the following representation for the
second order cumulant :

Remark 3.1. Note that in practice there is also a small correlation due to the initial data
since F",0

2 , F",0
1 ⌦ F",0

1 . But this correction is actually much smaller (by a factor "), so we
will neglect it in the sequel.

3.2. A complete statistical picture for short times
4. BEYOND LANFORD’S TIME
4.1. Main di�culties
4.2. Close to equilibrium
4.3. Some elements of proof
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Figure 3.3: Decomposition of the dynamical exclusion condition.

where P`k is the set of partitions of {1, . . . , k} in ` parts with σ = {σ1, . . . , σ`}, |σi|
being the cardinality of the set σi and Zσi = (zj)j∈σi . Each cumulant encodes finer and
finer correlations. Contrary to correlation functions (F ε

k ), the cumulants (f εk) do not
duplicate the information which is already encoded at lower orders. From a geometric
point of view, we can extend the analysis of the previous paragraph and show that the
k-order cumulant f εk can be represented by k trees that are completely connected either
by external collisions or by overlaps (see Figure 3.5). These dynamical correlations can
be classified by a signed graph with k vertices representing the different trees, coding
tree collisions (the corresponding edges take a + sign) and overlaps (the corresponding
edges take a - sign). We can then systematically extract a minimally connected graph T
by identifying k − 1 “aggregations” of tree collisions or overlaps. We then expect f εk to
decompose into a sum of 2k−1kk−2 terms, where the factor kk−2 is the number of trees with
k numbered vertices (from Cayley’s formula). For each given signed minimally connected
graph, the collision/overlap conditions correspond to k − 1 independent constraints on
the configuration z1? , . . . , zk? at time t. Therefore, neglecting the issue of large velocities,
this contribution to the cumulant f εk has a Lebesgue measure of size O

(
(t/µε)

k−1
)
, and
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Figure 3.4: The second-order cumulant corresponds to the occurrence of at least one recollision
between trees or an overlap.

1⋆ 2⋆

f ε5 = μ4
ε ×

3⋆ 4⋆ 5⋆

Figure 3.5: The cumulant of order k corresponds to trees with roots in 1?, . . . , k? that are
completely connected by external collisions or overlaps.

we derive the estimate

‖f εk‖L1 ≤ µk−1
ε Ck × 2k−1kk−2 × (t/µε)

k−1 ≤ k! C (Ct)k−1 . (17)

A geometric argument similar to the one developed in Lanford’s proof and recalled in
the analysis of the second-order cumulant above shows that f εk converges to a limiting
cumulant fk and that only graphs with exactly k − 1 external collisions or overlaps (and
no cycles) contribute in the limit.

Note further that a classical and rather simple calculation (based on the series expan-
sions of the exponential and logarithm) shows that the cumulants are nothing but the
coefficients of the series expansion of the exponential moment:

Iεt (h) :=
1

µε
logEε

[
exp

(
µε〈πεt , h〉

)]
=
∞∑
k=1

1

k!

ˆ
f εk(t, Zk)

k∏
i=1

(eh(zi) − 1)dZk . (18)

The quantity Iεt (h) is called cumulant generating function. The estimate (17) provides
the analyticity of Iεt (h) in short time as a function of eh, and this uniformly with respect
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to ε (sufficiently small). The limit It of Iεt can then be determined as a series in terms
of the limiting cumulants fk

It(h) =
∞∑
k=1

1

k!

ˆ
fk(t, Zk)

k∏
i=1

(eh(zi) − 1)dZk .

In a suitable functional setting [7], it can be shown that this functional satisfies a
Hamilton-Jacobi equation

∂tIt(h) =

ˆ
dz
∂It(h)

∂h
v · ∇xh + H

(∂It(h)

∂h
, h
)

with initial condition I(0, h) =
´
dzf 0(eh − 1) and Hamiltonian given by

H
(
ϕ, h

)
:=

1

2

ˆ
ϕ(z1)ϕ(z2)

(
e∆h − 1

)
dµ(z1, z2, ω) , (19)

where ∆h(z1, z2, ω) = h(z′1) + h(z′2)− h(z1)− h(z2). We use here the notation (8) for the
pre-collisional velocities and the definition

dµ(z1, z2, ω) := δx1−x2
(
(v1 − v2) · ω

)
+
dωdv1dv2dx1 .

The successive derivatives of this functional being precisely the limit cumulants fk, the
successive derivatives of the Hamilton-Jacobi equation provide the evolution equations of
these cumulants: for example differentiating this equation once produces the Boltzmann
equation, differentiating it twice produces the equation of the covariance described in the
next paragraph.

3.3 Fluctuations

The control of the cumulant generating function allows in particular to obtain the conver-
gence of the fluctuation field defined in (4) and thus to analyze the dynamical fluctuations
over a time T ? of the same order of magnitude as the convergence time TL of Theorem
1.1.

Theorem 1.2 (Bodineau, Gallagher, Saint-Raymond, Simonella [7]). The fluctuation field ζεt
converges, in the low density limit and on a time interval [0, T ?] towards a process ζt, so-
lution to the fluctuating Boltzmann equation:

dζt = Ltζtdt︸ ︷︷ ︸
linearized Boltzmann operator

+ dηt︸︷︷︸
Gaussian noise

Lth = −v · ∇xh︸ ︷︷ ︸
transport

+ C(ft, h) + C(h, ft)︸ ︷︷ ︸
linearized collision operator

(20)

where ft is the solution at time t to the Boltzmann equation (7) with initial data f 0, and
dηt is a centered Gaussian noise delta-correlated in t, x with covariance

Covt(h1, h2) =
1

2

ˆ
dz1dz2dω ((v2 − v1) · ω)+δx2−x1f(t, z1)f(t, z2)∆h1∆h2(z1, z2, ω)

where ∆h(z1, z2, ω) = h(z′1) + h(z′2)− h(z1)− h(z2).
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The limiting process (20) was conjectured by Spohn in [25] and this reference also
presents a large panorama on the theory of fluctuations in physics. In the context of
dynamics with random collisions, a similar result is shown by Rezakhanlou in [24]. In the
deterministic setting, the noise obtained in the limit is a consequence of the asymptoti-
cally unstable structure of the microscopic dynamics (see Figure 1.2) combined with the
randomness of the initial data at small scales.

3.4 Large deviations

The strength of the cumulant generating function becomes really apparent at the level of
large deviations, i.e. for very improbable trajectories which are at a ”distance” O(1) from
the averaged dynamics: roughly speaking, we can show that the probability of observing
an empirical distribution close to the density ϕ(t, x, v) during the time interval [0, T ]
decays exponentially fast with a rate quantified by a functional F[0,T ] which evaluates the
cost of this deviation in the low density asymptotics

Pε (πεt ' ϕt, ∀t ≤ T ) ∼ exp
(
− µεF[0,T ](ϕ)

)
. (21)

The proximity between πε and ϕ is measured in weak topology in the Skorokhod space
of measure-valued functions. A precise formulation of (21) and a proof can be found
in [5]. The result of [5] can be summarized as follows: for a class of functions ϕ in
a neighborhood of the solution to the Boltzmann equation, there exists a time interval
[0, T ∗] where the asymptotic (21) is characterized by a functional F[0,T ∗] obtained by some
Legendre transform of the Hamiltonian H defined by (19). This functional is identical
to the one conjectured in [24, 9], by analogy with stochastic collision models of Kac’s
type [23, 18, 15, 2]. Let us also note that the limiting SPDE (20) could be predicted
by the same analogy with Kac’s model for which collisions are modeled by a Markov
process [19, 20]. Thus the statistical analysis of the fluctuations and large deviations of
the empirical measure confirms the robustness of Boltzmann’s intuition (cf. Section 2.1):
even on exponentially small scales, the behavior of the empirical measure of a hard sphere
gas is identical to that of a model of particles with random collisions depending only on
the local density. This does not contradict the Hamiltonian structure of the microscopic
dynamics. Memory effects persist, but they are encoded in ways that are ”transverse” to
the empirical measure (or at different spatial scales).

4 Conclusion

Over a short time, Lanford’s theorem states the convergence of the empirical measure of
a hard sphere gas to the solution to the Boltzmann equation (Theorem 1.1). This result
is completed by the analysis of fluctuations (Theorem 1.2) and large deviations (section
3.4) of the empirical measure. These stochastic corrections are proved on times of the
same order of magnitude as Lanford’s theorem.

The strategy of the proof consists in tracking how the randomness of the initial mea-
sure is transported by the dynamics of hard spheres and how the instability of this
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dynamics transfers, in the low density asymptotics, the initial randomness into a dy-
namical white noise (space/time). The convergence time is limited because the current
proof gives only rough estimates of the dynamical correlations, obtained by considering
that collisions only destroy the initial chaos by forming larger and larger aggregates of
correlated particles. An important step to progress in the mathematical understanding
of these models would be to show that the disorder is not simply the result of the initial
data, but that it can be regenerated by the mixing properties of the dynamics.

A more favourable framework for controlling long time evolution is to consider an
initial measure obtained as a perturbation of an equilibrium measure. The stationarity of
the equilibrium measure then becomes a key tool to control dynamical correlations. The
simplest case consists in perturbing only one particle, which shall be called the tagged
particle, and to study its evolution over time. In [3], it is established that this particle
follows a Brownian motion for large times. Another case where we know how to use the
invariant measure is the study of the fluctuation field at equilibrium. In a series of recent
works [6, 7], Theorem 1.2 has been generalized to arbitrarily large, and even slightly
divergent, kinetic times. This allows in particular to derive the fluctuating hydrodynamic
Stokes-Fourier equations.
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Calls for nominations

Call for Nominations for the 2024 Henri Poincaré Prize

We call for nominations for the 2024 Henri Poincaré Prize. The deadline is September
30, 2023.

A nomination should include the following:

• Description of the scientific work of the nominee emphasizing her/his key contri-
butions

• A recent CV of the nominee

• A proposed citation should the nominee be selected for an award

Nominations should be sent to the President (president@iamp.org) or to the secretary
(secretary@iamp.org) of the IAMP.

Please also spread the word among your colleagues who are not IAMP members.

Note that members of the Executive Committee of the Association (see
http://www.iamp.org/page.php?page=page about) are not eligible for nomination for
the prize.

For past winners see http://www.iamp.org/page.php?page=page prize poincare.

Bruno Nachtergaele, IAMP president

Call for nominations for the 2024 IAMP Early Career Award

The IAMP Executive Committee calls for nominations for the 2024 IAMP Early Career
Award. The prize was instituted in 2008 and will be awarded for the fifth time at the
ICMP in Strasbourg, France, in July 2024.

The Early Career Award is given in recognition of a single achievement in mathematical
physics. The total prize value amounts to 3000 Euro and is reserved for scientists whose
age in years since birth on July 31 of the year of the Congress is less than 35.

The nomination should include the name of the candidate accompanied by a brief char-
acterization of the work singled out for the prize. Members of the IAMP should send
their nomination or nominations to the president (president@iamp.org) and to the to
the secretary (secretary@iamp.org).

A list of previous winners and the details of the award selection process can be found
at http://www.iamp.org.

Nominations should be made not later than on January 31, 2024.
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Call for Nominations for the 2024 IUPAP C18 Early Career Scientist Prize

IUPAP Commission C18 (Mathematical Physics) calls for nominations for the IUPAP
Early Carrier Scientist Prize, formerly known as Young Scientist Prize, in Mathematical
Physics.

The prize recognizes exceptional achievements in mathematical physics by scientists at
relatively early stages of their careers. It is awarded triennially to at most three young
scientists satisfying the following criteria:

• The recipients of the awards in a given year should have a maximum of 8 years of
research experience (excluding career interruptions) following their PhD on Jan-
uary 1 of that year (in this case that is 2024).

• The recipients should have performed original work of outstanding scientific quality
in mathematical physics.

• Preference may be given to young mathematical physicists from underrepresented
groups and geographical regions.

The awards will be presented at the ICMP in July, 2024 in Strasbourg. A nomination
should include a brief description of the achievements of the candidate that support
the nomination, a CV, and a list of publications (or current links to that information
online).

Please submit nominations to:

• Nilanjana Datta (secretary, n.datta@damtp.cam.ac.uk)

• Simone Warzel (vice-chair, warzel@ma.tum.de)

• Alain Joye (chair, alain.joye@univ-grenoble-alpes.fr)

The deadline for nominations is September 30, 2023. For further information, includ-
ing past recipients, see https://iupap.org/commissions/c18-mathematical-physics/c18-
awards/.
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Time’s Arrow

Time’s Arrow

Scientific anniversaries

1923: Arthur H. Compton publishes his now classical article on Compton Scattering,
describing the experiments he had carried out in 1922 at the Washington University of
Saint Louis [A quantum theory of the scattering of x-rays by light elements, Physical
Review 21, 483-502].

1923: Norbert Wiener publishes his paper on the Wiener process [Differential Space, J.
Math. & Phys. 2, 132-174]

1948: Richard Feynman publishes his path integral formulation of quantum mechan-
ics [Space-Time Approach to Non-Relativistic Quantum Mechanics,” Reviews of Modern
Physics 20, 367-387]

1973: David J. Gross and Frank Wilczek publish their paper on asymptotic freedom in
Yang-Mills theory [Ultraviolet Behavior of Non-Abelian Gauge Theories, Phys. Rev. Lett.
30, 1343]

Awards and honors

The ESI Medal 2023 was awarded to Isabelle Gallagher.

Elliott H. Lieb was awarded the 2023 Kyoto Prize in the Mathematical Sciences for his
“Pioneering Mathematical Research in Physics, Chemistry, and Quantum Information
Science Based on Many-Body Physics” (announced on June 15th, 2023)

Lost luminaries

Marinus Winnink, 15 April 2023.
Stanley Deser, 21 April 2023.
Marius Mantoiu, June 2023.
Kalyanapuram R. Parthasarathy, 14 June 2023.

Readers are encouraged to send items for “Time’s Arrow” to bulletin@iamp.org.
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News from the IAMP Executive Committee

News from the IAMP Executive Committee

New individual members

IAMP welcomes the following new members

1. Professor Michael Kiessling, Dept. of Mathematics, Rutgers University, USA

2. Doctor Xiaoxu Wu, Dept. of Mathematics, Rutgers University, USA

3. Doctor Maik Reddiger, Anhalt University of Applied Sciences, Germany

4. Doctor Cornelie Mitcha Malanda, Marien Ngouabi University, Brazzaville,
Rep.of Congo

5. Doctor Remi Avohou, Okinawa Institute of Science and Technology, Japan

6. Doctor Simone Murro, University of Genoa, Italy

7. Professor Scott Armstrong, Courant Institute, New York University, USA

8. Doctor Alessandra Iacobucci , CEREMADE, Dauphine PSL, France

9. Professor Tulkin Rasulov, Bukhara State University, Uzbekistan

10. Doctor Chiara Boccato, Dept. of Mathematics, University of Milan, Italy

11. Doctor Davide Lonigro, Department of Mathematics, University of Bari Aldo
Moro & INFN, Italy

Recent conference announcements

The XII. International Symposium on Quantum Theory and Symmetries (QTS12)

July 24 - July 28, 2023, at Czech Technical University in Prague, Czech Republic.

Current Topics in Mathematical Physics

July 31 - August 4, 2023, at Faculty of Physics, University of Warsaw, Poland.

VIASM-IAMP Summer School in Mathematical Physics

August 1-5, 2023, at Quy Nhon University Quy Nhon, Vietnam.

Finite Dimensional Integrable Systems in Geometry and Mathematical Physics (FDIS
2023)

August 7-11, 2023, at University of Antwerp in Belgium.
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News from the IAMP Executive Committee

Spectral Analysis and Applications, in honor of Peter Kuchment’s scientific work

October 13-15, 2023, Texas A&M University, College Station, USA.

Random Matrices and Integrability in Complex and Quantum Systems

October 25-30, 2023, at Yad Hashmona, Judean Hills, Israel.

For an updated list of academic job announcements in mathematical physics and related
fields visit

http://www.iamp.org/page.php?page=page_positions

Michael Loss (IAMP Secretary)
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