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From the replica trick to the replica symmetry-breaking technique

From the replica trick
to the replica symmetry-breaking technique
by PATRICK CHARBONNEAU

A trick is a clever idea that can be used
once, while a technique is a mature trick
that can be used at least twice. We will
see in this section that tricks tend to
evolve naturally into techniques.

D. Knuth, The Art of Computer
Programming, Vol. 4A (2014), Section

7.1.3

Among the various remarkable contributions of Giorgio Parisi to physics, his for-
mulation of the replica symmetry breaking solution for the Sherrington-Kirkpatrick
model stands out. In this article, different historical sources are used to reconstruct
the scientific and professional contexts of this prodigious advance.

1 Introduction
Giorgio Parisi was granted half of the 2021 Nobel Prize in Physics “for the discovery of the
interplay of disorder and fluctuations in physical systems from atomic to planetary scales.”
This unusually vague citation reflects the depth and breadth of Parisi’s seminal contributions
to physics, which span from quantum chromodynamics to climate change and bird flocking.
Yet it partly obfuscates that without one particular such contribution his career might not have
stood out as markedly as it did. For some, Parisi’s replica symmetry breaking (RSB) solu-
tion of the Sherrington-Kirkpatrick model of spin glasses and his ensuing work on disordered
systems deserve particular note. Various other award citations support that impression1, and
even the scientific background for this latest prize is somewhat more explicit [95]. A possible
explanation for this discrepancy might be that, despite being in its fifth decade, RSB is still
not uncontroversial. From a mathematical standpoint, it indeed remains a non-rigorous (and
therefore somewhat uncontrolled) calculation scheme.

In a nutshell, RSB follows from using the replica identity to average the free energy of a
system over some quenched (or frozen) disorder,

− βF = logZ = lim
n→0

∂Zn

∂n
, (1)

1For instance, the 1992 Boltzmann Medal was “awarded to Giorgio Parisi for his fundamental contributions
to statistical physics, and particularly for his solution of the mean field theory of spin glasses,” and the 2005
Dannie Heineman Prize for Mathematical Physics was “for fundamental theoretical discoveries in broad areas of
elementary particle physics, quantum field theory, and statistical mechanics; especially for work on spin glasses
and disordered systems”.
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given the partition function Z for a system with a given realization of that disorder. Why this
particular average? An early articulation of the physics of quenched disorder was offered in
the late 1950s by theoretical physicist Robert Brout (1928-2011) [18], who like many others
at the time was considering the impact of randomness in solid state physics. By then, systems
with annealed impurities were well understood. Such impurities are deemed equilibrated in all
instances, and therefore the free energy of such a system can be obtained from first averaging
the partition function, i.e., −βF = logZ. Brout noted:

We are, however, interested not in the free energy of such a system, but rather
the free energy of a given system of [impurities] frozen into their positions [. . . ].
Since we are interested in a random sample, it is clear that it is desired first to
calculate the spin sum in the partition function (since the spin system is assumed
to be in thermal equilibrium) and then to average the logarithm of this quantity
over all spatial configurations. In short, we must calculate logZ, i.e., the mean
free energy. [18]

Even with this solid physical reasoning, Eq. (1) remains problematic. The quantity Zn can
only be expediently computed for an integer number of system replicas n, while the analytic
continuation to the reals is not guaranteed to be unique. Empirically, when it isn’t, new physics
emerges. Technically speaking, averaging Zn can couple the n replicas. If all these cou-
plings (or overlaps q) are equivalent the continuation is well defined and the solution is said
to be replica symmetric (RS). If this coupling breaks the symmetry between replicas, how-
ever, particular care must be taken. The Parisi ansatz considers a subgroup of symmetries for
breaking the equivalence between replicas that solves whole classes of models. In many cases
that solution has been independently (albeit onerously) demonstrated to be exact (see, e.g.,
Refs. [93, 94]); in many others it is presumed correct but the mathematical jury is still out.
Notwithstanding its limited rigor, the RSB approach has markedly impacted our understanding
of disordered systems in physics and beyond [34].

As part of an ongoing oral history project, Francesco Zamponi and I are trying to understand
the intellectual, sociological and pedagogical sources and impacts of this particular tension
between efficacy and rigor in theoretical physics [36]. The present article does not attempt to
summarize the whole project, but to more narrowly capture how the various formulations and
uses of the replica trick eventually brought Parisi to the correct RSB technique.

2 n→ 0 Identity in Mathematics: Hardy and Riesz

In 1928, at the end of his first two-year term as president of the London Mathematical Soci-
ety, British mathematician G. H. Hardy (1877-1947) announced his plan to publish a chapter
dedicated specifically to inequalities. He found the topic to be “‘bright’ and amusing, and in-
telligible without large reserves of knowledge; and it affords unlimited opportunities for that
expertness in elementary techniques”[59]. Among the various results reported in his prolegom-
ena, one concerns the arithmetic and geometric means of a positive, bounded and Riemann
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integrable function f(x) over an arbitrary interval (a, b),

U(f) =
1

b− a

ˆ b

a

f(x)dx and G(f) =
1

b− a exp

(ˆ b

a

log fdx

)
respectively. (1)

The theorem stating that G(f) ≤ U(f), however, is said to be “not too easy to prove”, and a
related result that G(f) = limr→0Mr(f) for the generalized arithmetic mean

Mr(f) =

(
1

b− a

ˆ b

a

f rdx

)1/r

, (2)

“also presents some points of genuine difficulty”. In fact, “there is no general proof [of it]
in any book”, he added. However, in a subsequent letter to Hardy, Hungarian mathematician
Frédéric (Frigyes) Riesz (1880-1956) showed that a simple trick of his finding can surmount
both hurdles. From the identity limn→0(fn − 1)/n = log f , albeit for n ∈ R, it indeed follows
that

lim
n→0

[U(fn)− 1]/n = U(log f) = logG(f), (3)

and the two theorems can then be straightforwardly demonstrated.
Over the five years that followed Hardy’s presidential address, the chapter2 grew into a full-

scale monograph, co-authored with his long-time collaborator, J. E. Littlewood (1885-1977),
and a regular Cambridge visitor, George Pólya (1887-1985) [60, 86]. That book, which laid the
basis for the modern study of inequalities [51], is still in print. Its chapter on integrals includes
Riesz’ demonstration of the original results—now part of Theorem 187—generalized to means
weighed by probability distribution [60, Eq. (6.8.3)].

3 Early Replica Trick in Physics: Kac, Edwards and Ma
Despite the mathematical elegance and usefulness of Riesz’s identity, it does not appear to
have been known by the statistical physicists who later used it as the basis of their replica trick.
(None of the mathematicians who have since used Theorem 187 seem aware of its physical
relevance either; see, e.g., [73, 76].) The physics tradition can instead be traced back to three
seemingly independent reformulations of the result around 1970.

It is not averaging over the free energy, but over the density of state of a chain of harmonic
oscillators with random masses that brought mathematical physicist Mark Kac (1914-1984)
to the replica trick. (Fittingly, Freeman Dyson (1923-2020) first proposed that model, moti-
vated by “a question of [Charles] Kittel [1916-2019], who was concerned with the thermal
properties of glass” [44], a system for which the RSB technique has since been particularly
successful [84].) Although Kac had once done formal work on the spectrum of analogous ma-
trices [66], by the late 1960s he had long since moved on. His interest was nevertheless rekin-
dled by the publication of a series of reprints—including Dyson’s—about one-dimensional
systems [70]. In a 1968 preprint based on a lecture given in Trondheim [65], where Kac was

2Hardy initially considered submitting the work to Cambridge Tracts in Mathematics and Mathematical
Physics [60, p. v], a series to which he had previously contributed a few fascicles [57, 58, 61].
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on sabbatical leave from the Rockefeller University [64, p. 146], he proposed a replica trick to
compute the logarithm of the determinantal equation, from which it is then possible to compute
the average of the density of states. Although the proposed computation can only be done for
integer powers of the quantity of interest, Kac made the “extremely reasonable” conjecture to
analytically continue the expression to positive real numbers. Despite Kac’s confidence in the
scheme, he found “considerable interest to investigate the relationship between [his] approach
and the approach of Dyson” [65]. One of his postdocs, Ta-Feng Lin, soon took care of validat-
ing the equivalence [71]. Kac is not a co-author of the subsequent paper, but given that he is
acknowledged as having discussed the problem and helped writing the ensuing manuscript, the
keenness of his interest cannot be denied. Once that particular check was complete, however,
neither Lin nor Kac ever again paid attention to this mathematically unorthodox approach.

Given the difference in presentation style and the absence of any references to prior works,
Manchester physicist Sam Edwards (1928-2015) had likely not heard Kac’s talk nor seen his
preprint when he started working on rubber3. The stylistic contrast is nevertheless interest-
ing. Edwards, following his advances on self-avoiding walks and polymer solutions, was en-
couraged by his Manchester colleagues Geoffrey Allen and Geoffrey Gee (1910-1996) [3], to
obtain a “semi-microscopic theory which, in modern parlance, described the universal prop-
erties of rubber that emerged from any polymer system” [54]. Rubber, having crosslinks that
are randomly distributed yet fixed for a given sample, precisely follows Brout’s rationale for
averaging over different realizations of disorder. For Edwards, considering the free energy
F (n) of a model with n additional copies, and expanding for small n then provided the av-
erage of interest. Although the approach implicitly requires analytically continuing integers
to the reals, Edwards—unlike Kac—showed no qualms about it. He simply states: (emphasis
added) “suppose (as does indeed occur) that F (n) can be expanded” [45], and that the mathe-
matical assumption is “a posteriori justifiable” [46]. Edwards, understanding that the problem
“formulation is rigorously founded”, assigned the project to a new graduate student, Rowan
Deam [42]. Only five years later—following Edwards’ move to Cambridge and his chairing of
the Science Research Council (SRC) [101]—was the completed effort published [41]. Despite
all that maturation, however, the analytic continuation in n was still then not much of a concern
to him.

In yet another independent effort, Shang-keng Ma (1940-1983) used a version of the replica
trick to average over disorder in his 1972 preprint about an electron moving in a random po-
tential. At the time, Ma was on sabbatical leave at Cornell, where he learned about Wilson’s
recent work on the renormalization group4. That exposure led him to consider a 1/n expansion
in the number n of components of a vectorial field theory to capture the critical behavior of a
Bose gas [78]. In this context, it is not surprising that Ma might have also considered the zero-
component limit, n = 0, as a means to study disordered systems. Because the original preprint
was never published (and no copy of it has yet been unearthed), his precise motivations remain
somewhat elusive, but some of the work’s content can nevertheless be reconstructed through

3Even when Edwards worked out the average spectrum of symmetric random matrices using the replica trick a
few years later, he did not cite Kac’s use of that same identity [48]. Recent presentations of this topic also neglect
Kac’s prior work. See, e.g., [72, Chap. 16] and [85, Chap. 13].

4“Remembering Shang-keng Ma,” Shang-keng Ma Papers, Special Collections & Archives, UC San Diego,
Box 1, Folder 1
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citations5. For our purposes, the most relevant of these is Geoffrey Grinstein’s Harvard PhD
thesis [56], obtained under Alan Luther’s supervision. Grinstein indeed used “a formal math-
ematical trick, devised by Ma,” to formulate an effective Hamiltonian for an Ising model with
random nonmagnetic impurities [56, p. 18], which he derived “order by order in perturbation
theory, and [. . . ] used this to obtain critical exponents for a number of random models by using
an expansion in powers of (4− d)” [49]6.

By 1974, the replica trick was therefore starting to circulate in various theoretical physics
circles. Given its relatively insouciant use by Edwards and others, had it not been for the
burgeoning interest in a novel type of magnetic alloys, spin glasses, the underlying lack of
mathematical rigor might not have raised much physical concern for some time longer.

4 Replica Trick and Spin Glasses

Anderson paid attention to the experimental work on spin glasses from its early days [4, 5, 11,
10]. This interest naturally followed from him having worked on the Kondo effect, which was
studied with the same alloys albeit at a lower concentration of magnetic impurities. His curios-
ity got further piqued when experimental results by John Mydosh and his graduate student at
Wayne State University, Vincent Cannella, suggested that a non-standard transition might be at
play in these systems [19, 10, 27]. Spin glasses therefore putatively exhibited a different type
of physics, more complex than what was found in ordered systems, with potentially “many
other applications in disordered state physics” [47]7. In 1974, the time was ripe for Anderson
to dive into the topic. He was dissatisfied [25] with a recent theoretical proposal that ascribed
the physics of spin glasses to a distribution of internal magnetic fields [2, 1], and Edwards, his
new Cambridge colleague, had just asked him for a problem on which to work during the long
commute back and forth from the SRC in London.

When Edwards heard the spin glass proposal from Anderson, he immediately saw the op-
portunity to adapt his replica approach to this other type of quenched disorder. Of this interac-
tion, Anderson later recalled:

Sam mentioned to me that he happened to have in his notebook a method he had
run into in the problem of gels, for which it wasn’t well suited–but he thought this
was the perfect instance. In a couple of weeks, at most, he brought in the replica
solution which constitutes the main body of that paper. For me at least, and I
think also for Sam, the self-consistent mean field technique of the earlier part of
the paper was a welcome check on the very unfamiliar mathematics of the replica

5We note, in particular, that Grinstein’s PhD thesis mentions the treatment of an electron in a random poten-
tial [56, p. 121], and Ref. [50] refers to an expansion in n−1. Reference [87] points instead to Ma’s monograph
on critical phenomena [77, p. 413], which mentions that “the self-attracting walk problem [. . . ] is also equivalent
to the problem of electronic motion in a random potential”. The former was solved by de Gennes [40], and one
might surmise that Ma pulled his preprint after noticing that equivalence.

6The analysis of Grinstein’s result by Victor Emery (1934-2002) in Ref. [49] is what the ensuing publication
cites [55].

7Anderson’s biographer, however, found no particular association between complexity and his early interest in
spin glasses. [104, p. 260].
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method, mathematics in which at every stage convergence seemed problematical
until it happened [10].

A series of joint publications on spin glasses introduced the Edwards-Anderson (EA) model,

H(EA) =
∑
〈ij〉

Jijsi · sj (1)

for nearest-neighbor classical Heisenberg spins, si ∈ S2, on a cubic lattice, with coupling
constants Jij taken at random from a Gaussian distribution. (In other words, nearest-neighbor
sites randomly interact through ferromagnetic or antiferromagnetic couplings, which frustrate
the formation of ordered states at low temperatures.) The first of these papers, in particular,
presented the replica trick solution of the EA model [47].

Despite Edwards’ busy administrative schedule in London, he tried to remain active as
a mentor as well. He notably asked one of his Cambridge students to relocate to Imperial
College London, so as to be physically closer [25, 102]. During Edwards’ visits, he would also
discuss with his former student, then on the faculty, David Sherrington. Sherrington recalls that
Edwards: “wanted someone else to talk to about [spin glasses]. He was in London and I was in
London, and we knew one another, we got on rather well and we thought in similar fashions,
and so he’d talk to me” [25]. By that time, Sherrington was already working on disordered
magnetic materials [90], in part thanks to his experimental colleague Brian Coles (1926-1997),
who was an early advocate for the study of spin glasses and is even credited with coining the
term [20]8.

Upon hearing about Edwards’ work, Sherrington quickly tried a couple of ideas [88, 91, 24],
before honing in on wanting “to find something for which I could apply a kind of test of other
approximations Sam was making, by looking at a problem which should be exactly solvable.
I had enough background to know what that might be” [25]. That background was knowing
that a mean-field theory treatment should be exact for fully-connected models, in which each
spin interacts with all others equally. Another of Sherrington’s choices was more fortuitous.
While Edwards—motivated by experiments—considered Heisenberg spins, Sherrington opted
for Ising spins, si = ±1, which seemed algebraically simpler [25], thus giving

H(SK) =
∑
ij

(J0 + Jij)sisj, (2)

for a J0 ferromagnetic offset (Fig. 1).
It took some time for the consequences of that choice to sink in. Although Sherrington’s

derivation using replicas was complete by the spring of 1975, it is only during a sabbatical
leave that following fall at IBM’s Watson Research Center, in Yorktown Heights, that he got
to collaborate with Scott Kirkpatrick. Kirkpatrick, who had worked on magnetism and per-
colation, quickly got interested in this new problem. His computational versatility further led
him to consider numerical solutions to Sherrington’s equations [32]. The two were then “able
to recognize that even though many of the results looked right, there was a serious problem,

8Terminological primacy is debated. In an early report, Anderson credits Coles for the term “magnetic
glasses” [4], which he himself shortened to “spin glasses” [9].
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Figure 1: Phase diagram of the SK model as a function of temperature T and ferromagnetic bias J0 both
rescaled by the variance of Jij : (left) The original result [89], and (right) identifying the replica instabil-
ity region of de Almeida and Thouless [39]. (left) Reprinted figure with permission from D. Sherrington
and S. Kirkpatrick. Phys. Rev. Lett. 35, 1792 (1975) ©(1975) by the American Physical Society. (right)
Taken from Ref. [39] ©(1978) IOP Publishing. Reproduced with permission. All rights reserved.

namely that the entropy was negative at T = 0, which cannot occur for discrete spins,” such
as Ising spins. That finding was sufficiently surprising that by mid-October already the SK
manuscript was at Physical Review Letters [89].

5 Towards Breaking RS: Thouless et al.
As a referee of the SK manuscript, Birmingham physicist David Thouless (1934-2019) got an
early peek at the physical inconsistency of its results [26, 25]. Sherrington recalls Thouless—
as reviewer—insisting that: “It can’t be exactly solvable, because it’s wrong!” He added: “Of
course, it’s the solution that wasn’t exact. The model itself was solvable. [Thouless] accepted
‘solvable’, he wouldn’t accept ‘exactly solvable’,”[25]. Michael Moore, who joined Manch-
ester after Edwards’ departure and regularly ran into Thouless at that time, remembers that
“Thouless’ original hypothesis was that Sherrington had simply cocked up the calculation com-
pletely, but then he did the calculation himself and he discovered it was perfectly ok” [30]. In
fact, Thouless had the calculation checked “by more careful people than [him]”9, but Moore’s
point persists.

Interestingly, it was not the replica approach that bothered Thouless. As he wrote to Ed-
wards, “[it] is not so much the n = 0 business which worries me, as I am learning to accept
that.” In a separate letter to Anderson a few days earlier, he wrote more explicitly: “I suspect
the error in the SK treatment comes in the assumption that the main contribution to the steep-
est descents integral comes from a point at which all the n values of xα are equal and all the
n(n− 1) values of yαβ are equal. Hard to argue about this when n is zero, however”10. In this
excerpt, Thouless explains that the problem is that all n(n − 1)/2 pairs of replicas αβ (with
α 6= β), which end up coupled as part of the calculation of Zn, are treated equivalently. A

9Letter from Thouless to Edwards, December 15, 1975, Thouless Papers, Royal Society, Box 6.
10Letter from Thouless to Anderson, 25 November 1975, J. R. L. de Almeida personal collection.
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possibility might be that different groups of replicas behave differently, thus breaking this sym-
metry between replicas. Pursuing this direction, however, was intricate. Moore also remembers
Thouless explaining that “[t]here must be an infinite number of ways to break replica symme-
try. What are the chances that one hits on the right scheme? With an n × n matrix, you can
parameterize it in endless ways, then you start fiddling with it. What criteria would you use to
choose a solution?”

Given these early insights, it was natural for Thouless to study the stability of the symmetric
assumption for replicas. By July 1977, he had already done part of the calculation, when he
assigned the work to his recently-arrived Brazilian graduate student, Jairo de Almeida [26]11.
Thouless told him up front: “The problem is with the replica symmetry thing that [SK] are
doing. If you do the stability analysis, then it is going to be negative.” The work, which was
extended to systems with a ferromagnetic bias (J0 > 0) by de Almeida, was submitted for
publication later that fall (Fig. 1) [39]. It would open the door to studies of replica symmetry
breaking, as other possible sources of discrepancy were gradually eliminated12.

Thouless, however, did not pursue this direction further. Before and after this result, he
toiled instead on circumventing the difficulties of the replica scheme altogether. Already at the
start of 1976, he was exchanging with Kirkpatrick, Anderson and his former student, Richard
Palmer, as well as with Eliott Lieb about another approach13. A preprint about the “Solution
of ’Solvable model of spin glass’ ” signed by the last four authors was then circulated. What
later became known as the TAP paper further developed at the summer 1976 Aspen meeting on
“Current topics in the theory of condensed matter,” and submitted that fall with a diminished
author list [97]14. Thouless’ other original works on spin glasses mostly sought out a mean-field
solution for a finite-connectivity Cayley tree (Bethe lattice). This effort, which he had started
in 1977 already15, only reached publication a decade or so later [96, 38, 21].

Others did not similarly equivocate. Moore, who first heard about the SK model from
Michael Kosterlitz, Thouless’ close collaborator (see, e.g., Ref. [69]), also developed an interest
in the topic. Despite largely buying into Thouless’ skepticism about the chances of success of
RSB, he and his Manchester colleague, Alan Bray, attacked the replica problem head on [17].
“We bashed away at this two-group method of breaking replica symmetry, which divided the
replicas into two groups: m in one category, n −m in the other. It seemed to be the simplest
scheme one could think of, but much to our astonishment we could get a stable solution.” Their
scheme, however, turned out to be fundamentally flawed in that limn→0 Zn(m) 6= 1 [30].

6 Actually Breaking RS: Blandin
A completely separate attempt to break replica symmetry was undertaken by André Blandin
(1933-1983). Blandin had gotten interested in magnetic systems with random couplings during

11See also “Research notebook ∼ 1977,” Thouless Papers, Royal Society, Box 02.
12At Duke, Richard Palmer and Leo Van Hemmen, then both young faculty members, considered the impact of

inverting the n→ 0 and the thermodynamic N →∞ limits in the saddle-point evaluation, but found no problem
with it [100, 28].

13Thouless Papers, Royal Society, Box 12.
14The process that led to the final authorship selection of this work remains a bit murky; see, e.g., Ref. [32].
15“Research notebook ∼ 1977,” Thouless Papers, Royal Society, Box 02
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his thesis days, as one of Jacques Friedel’s (1921-2014) first students at l’Université de Paris,
in Orsay. Interestingly, he then entertained that randomly distributed manganese impurities in
copper would give rise to an effective Hamiltonian

H(B) = −
∑
i,j

Mn atoms

f(rij)si · sj (1)

with oscillatory couplings f(rij) of the Ruderman-Kittel-Kasuya-Yosida (RKKY) type, but
“Ã faible concentration, nous pouvons négliger la structure cristalline et considérer les atomes
répartis au hasard comme dans un liquide” [16, p. 59-60]. In other words, the couplings should
be considered as randomly distributed, thus making the model akin to that later proposed by
Edwards and Anderson. At low temperatures, Blandin expected this model to exhibit “un
antiferromagnétisme où chaque spin est fixé, mais à des positions au hasard dans l’espace” [16,
p. 60]. (For this antiferromagnetism with random-yet-fixed spin positions, Friedel would later
prefer the term “le désordre magnétique gelé” over “spin glass” [53, p. 203].) Blandin, however,
added that further study of this model “dépasse le cadre de ce travail” [16, p. 63]. This (largely
unpublished16) analysis was indeed not pursued by Blandin for nearly two decades. During
that time, he built a solid career as a theorist in Friedel’s group, notably working on Anderson
localization and the Kondo effect, thereby keeping a strong interest in the physics of systems
with magnetic impurities [52].

It is unclear whether Blandin followed the early experimental work on spin glasses, but by
1975 he was tracking closely that of Edwards and Anderson [13, p. C6-1508]. His first pub-
lication on the topic, which he presented at a low temperature physics conference in August
197817, carefully discusses prior theoretical efforts [13, 99]18. More importantly, it proposes a
clear scheme and rationale for breaking the symmetry between replicas. His subdividing repli-
cas in n/m groups withm = 2 (i.e., in pairs) was motivated by the fact that the overlap q, which
Edwards and Anderson understood as an order parameter for spin glasses, is a two-replica cou-
pling field. Applying a (vanishing) coupling between these pairs should get them to share a
same free energy minimum, while uncoupled replicas should end up distant in configuration
space.

Despite there being “many ways of breaking the symmetry” [13, p. C6-1512], Blandin also
had a vision for pursuing more generic coupling forms. A few months prior to that publication,
he had recruited Thomas Garel and Marc Gabay as graduate students to work on this problem.
Gabay recalls:

One day, it was a Sunday, the phone rang at my home. I picked up the phone and
Blandin said: “We’ve got to meet in this café in Montparnasse.” [. . . ] Blandin
started excitedly to jot down equations on a piece of paper and to elaborate on

16According to Friedel [53, p. 203-204], Blandin discussed some of these ideas at a meeting in Oxford with
Walter Marshall (1932-1996), who then published some of this material [79], without properly crediting its ori-
gin. In that work, Marshall cites an earlier publication by Blandin and Friedel that only mentions some of these
ideas [14].

17XVth International Conference on Low Temperature Physics, Grenoble, France, August 23-29, 1978.
18During the summer of 1978, Blandin tried to get in touch with de Almeida to discuss his recent work with

Thouless, but that meeting fell through [26].
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Figure 1: (left) Ground state energy U(0) per spin of the SK model with J0 = 0 as a function of
system size N as computed by minimization. The simulation value tends toward -0.76(1) for N → ∞.
The arrow indicates the RS energy in that same limit [67]. (right) Overlap between replicas, q(x) with
x = m, for the SK model using the kRSB scheme with k = 1, 2, and ∞, as obtained from the
Parisi equation [83]. (left) Reprinted figure with permission from S. Kirkpatrick and D. Sherrington,
Phys. Rev. B 17, 4384 (1978) ©(1978) by the American Physical Society. (right) Taken from Ref. [83]
©(1980) IOP Publishing. Reproduced with permission. All rights reserved.

some ideas. [. . . ] In retrospect, of course, I realize that he had essentially the right
idea, and now I fully understand what he was sort of thinking. [. . . ] Incrementally,
indeed by working on more sophisticated schemes, we were able to find solutions
that were getting better and better, or less bad and less bad. [29]

Although this effort is cited as “to be published” in Blandin’s article for the conference
proceedings [13], it was not rushed to a journal. The next manuscript, which teasingly mentions
that “one may question the validity of defining an order parameter in the usual way, for this
transition” (emphasis in the original) [15], was sent out only in late June of 1979. Blandin was
on the right track, but his students doing the work were just getting started in this new research
direction. Blandin had by then also been battling depression for over a decade [33, 68, 29]
and even had to be hospitalized at times. This plight, piled on his teaching responsibilities as
professor, limited the extent of his personal engagement with the work. Moreover, he likely did
not see anyone else toiling in this particular direction, and therefore might not have seen any
particular urgency with advancing his RSB program.

7 Full RSB: Parisi
During the summer of 1978, the Les Houches summer school in theoretical physics held a
session on Ill-Condensed Matter [12]. This seminal get-together brought many of the key
players in spin glass theory—Anderson, Kirkpatrick, Sherrington, and Thouless—along with
a whole new generation of researchers to the French Alps. Given the growing theoretical and
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experimental enthusiams for spin glasses, the topic naturally appeared in various presentations.
Anderson, in particular, gave a broad overview of the physics of amorphous systems that in-
cluded a review of the problem with replicas, and specifically the “very dubious and delicate
mathematical extrapolation from finite integer n to n→ 0.” He added that ”[t]his extrapolation
has already led us into deep, but not irrevocable, trouble even in exactly soluble cases” [6]. For
those who attended the school, like Bernard Derrida, this presentation was a source of motiva-
tion to dive into the problem [23]; for those who were not there, a preprint of Anderson’s notes
quickly circulated. (See, e.g., [13, Ref. 34] and [37, Ref. 6].)

One of those who got a hold of that preprint is Giorgio Parisi, then a research scientist at
the Istituto Nazionale di Fisica Nucleare in Frascati, outside of Rome. By a strange turn of
events, Parisi was particularly receptive to this material. Up until that time, Parisi had not given
much attention to condensed matter or statistical physics. Although he did work on critical
exponents with some of his close university friends in the early 1970s [43, 35], he had quickly
turned his attention to high energy physics. In 1978, in particular, he was trying to understand
the importance of excitations in lattice gauge theory with Jean-Michel Drouffe and Nicolas
Sourlas, whom he regularly visited in Paris. In that context, he surmised that “you can have
some excitation like a cube that is added on the surface. Other than this cube, [you] can add
some other cube [. . . ] and there you can have some kind of polymer from the cube, which could
have some bifurcations and so on.” [35] While surveying the literature on that theme, the team
fell upon the recent work of Tom Lubensky and his UPenn graduate student, Joel Isaacson, on
a field theory of branched polymers [75]. Lubensky had learned about the replica trick from
Luther [33, 74], and first used it to study the critical properties of spin glasses [63]19. Hence, by
the time of his branched polymer papers, taking n→ 0 warranted but a brief technical mention.

Because Parisi was quite interested in this particular result, he nevertheless took note of
the technique and cross-referenced it with Anderson’s Les Houches notes. Despite having no
interest in spin glasses, he then thought:

We cannot remain with something wrong that is written in the literature, that some
method gives some wrong result and we don’t know why. [. . . ] I think that I should
read the literature and I think that it can be fixed easily. [. . . ] I thought it should be
fixed relatively easily. [35]

This effort, which started around Christmas of 1978, took particular note of the numerical
simulations that Kirkpatrick and Sherrington had published earlier that year. In addition to the
original negative zero-temperature entropy result, there was “good evidence in [that] second
paper that the ground state energy was not −0.798 [as SK had computed], but was around
−0.76” (Fig. 1). Parisi’s early efforts led him to independently reproduce Blandin’s approach
and to generalize it for any integer m, thus finding that “the entropy at zero temperature is
proportional to 1/m, so the entropy problem is cured when m goes to infinity, but the internal
energy does not move.”

That particular result is what Parisi presented as a poster at a Trieste meeting, in March

19Lubensky and his UPenn colleague, Brooks Harris, had also previously considered the impact of coupling
disorder in a ferromagnet, although not in the spin glass limit, J0 → 0 [62, 33].
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197920. Imre Kondor, who crossed the Iron Curtain from Hungary to attend, recalls that “that
poster was a peculiar one. It was just two pages torn from a copy book with some scribbles
on them.” Even so, one of the attendees noted that this calculation “does not make sense. You
have a free energy and the free energy should be minimized. Now, you have [two] parameters
[. . . ] and for one parameter you minimize and for the other parameter you maximize. [. . . ]
You should minimize with respect to the two” [35]. Although the basis of that remark is now
known to be erroneous in the limit n → ∞, it got Parisi thinking that one should consider
m to be a real number and therefore the possibility that m < 1, which would make both
optimizations alike. In this case, the low-temperature limit is not algebraically solvable, but
Parisi was undismayed. Given his prior coding experience and his access to a Cray-designed
supercomputer, the CDC 7600, through a terminal at Frascati, he could surmount that hurdle.
The result was that the entropy—albeit still negative—was much smaller and, crucially, that
the energy was quite close the computational one. He recalls: “I was extremely satisfied by this
thing, because it was the first time that I could see something that more or less solved, or nearly
solved, both problems.” That April, he sent a manuscript out with this result [81]. The reviewer
found that “the construction is completely incomprehensible, but as long as the formula gives
the correct result, the result goes in the right direction—the energy is correct and so on—the
paper should be published” [35].

Like Blandin, Parisi speculated that “it is quite likely that an infinite number of order pa-
rameters is needed in the correct treatment”21. Parisi, however, then promptly carried through
with the idea of dividing replicas in a hierarchy of subgroups. He recalls:

If you look from the point of view of symmetry, in essence what was broken
was the O(n → 0) group. When you have this broken symmetry, you have still
an O(0) group that remains unbroken, so you could break again that group [. . . ]. I
was familiar—from high-energy physics, from my thesis work—with the idea that
you have a group, a breaking of the symmetry group, Goldstone bosons and all
this type of coset group that corresponds to the breaking. All the group theory was
clear to me. [35]

However, even pursuing that idea was not mathematically trivial. Sourlas recalls that during
the summer of ’7922:

Parisi himself was very much aware of the fact that his theory was mathemati-
cally unorthodox. I very vividly remember an after-dinner discussion in a Cargèse
café between Parisi and the Harvard mathematician Raoul Bott [1923-2005]. Parisi
asks Bott: “Can you define a matrix with zero elements?” Bott tried for a few min-
utes to find a rigorous definition. [. . . ] Bott was very puzzled and discouraged and
this was the end of the discussion as I remember it. [31]

Yet Parisi persisted.
20Middle European Cooperation in Statistical Physics (MECO) Sixth International Seminar on Phase Transi-

tions and Critical Phenomena, March 26 – 28, 1979, International Center for Theoretical Physics, Trieste, Italy.
21Following Moore’s results, Peter Young had concluded the same [103, 22].
22They were all attending the Cargèse Summer Institute: Recent Developments in Gauge Theories, 26 August-8

September 1979 [92].
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I started to do two-step, three-step near the critical temperature. That was a
lot of complex computation because the algebra is painful when you’re doing two
steps, three steps, four steps. [. . . ] I had the intuition that when you go to k = ∞
the interval [between steps] becomes smaller and smaller and the function becomes
a continuous function. What was extremely surprising is that, when you write the
formula near the critical point for a continuous function, everything simplifies a
lot. [. . . ] That was more or less the situation before the summer. [. . . ] At the end
of ’79, [as] I was finishing the study, [. . . ] I realized that one could have a compact
expression for the free energy. [35]

Parisi’s first series of works on RSB ended with this compact Parisi formula solution the
SK model (see Fig. 1). Its “zero-temperature entropy is consistent with zero, while the zero-
temperature internal energy is estimated to be −0.7633± 10−4” [83], which agrees with Kirk-
patrick’s numerical results for the ground state. The reception of that series of results was
overall quite good. After an after dinner talk at Les Houches in February of 1980, Parisi felt
that: “Most of the people present there were convinced by these things. There was a quite
strong applause after the talk. I remember that Leo Kadanoff [1937-2015] was there, and I
remember that he strongly congratulated me with the thing.” Moore, who reviewed a few of
these early manuscripts, also remembers that “Giorgio’s scheme was developed quite quickly
and was accepted very quickly as well” [30].

Of the subsequent steps, Parisi wrote: “the computations of the fluctuations induced correc-
tions, of the Goldstone modes and of the lower critical dimension are only technical problems
which may be solved with a serious effort” [82]. Thouless, de Almeida and Kosterlitz were
quick to check that his solution was at least stable around the transition temperature.

This type of analysis [. . . ] was the final death knell of the original SK solution and
any meaningful solution must survive such an analysis. [. . . ] Although this paper
is further evidence that Parisi’s solution may be the correct one, it leaves the most
important questions unanswered. For example, what is the physical meaning of the
formal mathematical manipulations? [. . . ] How do we incorporate spatial fluctua-
tions in q and, of course, does a spin glass phase exist in realistic models? [98]

8 Conclusion
Following Parisi’s breakthrough with RSB, he initially left spin glasses to others. In his words:
“A problem that we could solve, well, it’s a problem that we can solve. A problem that we
cannot solve, that needs new ideas, that’s certainly interesting” [35]. The program sketched by
Parisi and by Thouless et al. seemed to fall in that second category. It turned out, however, to
be somewhat harder to carry out than expected. In some ways, it is still ongoing. Over the last
four decades, Parisi has therefore regularly rejoined the many physicists who bring new ideas
to the study of spin glasses.

In parallel, the replica trick has turned into a technique, applied to a variety of problems far
beyond spin glasses. Within only a few years, it had spread to the study of neural networks,
optimization problems, prebiotic evolution, and more. This expansion led Parisi to co-author
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the book Spin Glass Theory and Beyond [80], and Anderson to write a seven-part series on
spin glasses for Physics Today that included Spin glass as cornucopia [7] and Spin Glass as
Paradigm [8]. A contemporary effort to summarize the advances since has swelled into a book
manuscript with well over 30 chapters [34]. The success of the technique is undeniable.

While resolving the problem with the replica trick was one of these proverbial mathemat-
ical tours de force, getting to it required more than mere algebraic versatility. A finely tuned
mathematical risk-taking was also needed. Both theoretical physics’ cavalier attitude towards
rigor and a close attention to numerical and physical constraints were key for reaching a sound
result. A formal approach to RSB would not have gotten there. In fact, it still hasn’t. From
a mathematical physics viewpoint, the technique remains safely distant from rigor. Although
Parisi’s RSB results for the SK model are now formally known to hold [93, 94], the tension
with the physical efficacy of the approach persists. Not every scientist is at peace with that,
which likely made the Physics Nobel committee equivocate for some time.
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On the mathematical description of the photoelectric effect

by VOLKER BACH and MIGUEL BALLESTEROS

The photoelectric effect was discovered more than a century ago in a series of increasingly
precise experiments. It was observed [19, 17, 21] that electrons are ejected from a metal surface
when light is incident on that surface. The striking fact about this phenomenon noted by Lenard
in 1902 [21] is that the maximal kinetic energy Tmax of the ejected electrons depends on the
frequency of the incident light and not its intensity, while classical physics laws would lead to
the opposite dependence. In 1905 Einstein [13] gave the correct theoretical foundation of the
photoelectric effect, for which he was awarded the 1921 Nobel Prize in Physics. He based his
theory on 1902 experimental results by Lenard, who also received the Nobel prize in Physics
in 190523 and found that

Tmax = hν − ∆E , (1)

provided that the frequency ν of the light times Planck’s constant h, i.e., the photon energy hν,
is larger than the (material dependent) work function ∆E. Conversely, no electrons leave the
metal surface unless

hν ≥ ∆E . (2)

Quantum mechanics, founded some twenty years later in [18, 9, 24, 10, 11, 12, 23], resulted
from the search for a model that correctly predicted the atomic radiation spectra. According
to Bohr’s frequency condition [8], the differences of the discrete atomic energies Ei > Ej
determine the frequencies νij of the light emissions of the atom by

hνij = Ei − Ej . (3)

Note that quantum mechanics in absence of (classical or quantized) magnetic fields only yields
the atomic energy levels on the right side of Bohr’s frequency condition (3). The agreement of
their differences with the frequencies of the observed spectral lines times Planck’s constant re-
mains an empirical fact, unless the influence of the radiation field on the dynamics is taken into
account. This is usually done by considering a system consisting of an atom, molecule, or other
form of matter and the quantized radiation field which are weakly coupled to one another. Here
we focus on Bohr’s frequency condition (3) emerging from the quantum mechanics of atoms
and molecules and its mathematical derivation. Afterwards we come back to the relation (3)
found by Einstein, which is relevant for systems of condensed matter such as semiconductors
used in photovoltaics.

The models leading to (3) are quantum mechanical theories defined by a Hilbert space
H 3 ψt of states and a self-adjoint Hamiltonian Hg generating the dynamics on that space
given by the Schrödinger equation iψ̇t = Hgψt. The Hilbert space is given by the tensor product
H = Hel⊗Fph of the Hilbert spacesHel of the electrons in the matter and Fph of the quantized
radiation field - the photon field. Note that one or several electrons are the only dynamical

23Later, Lenard was a driving force in Nazi Germany against Einstein and “Jewish Physics” in general. Ein-
stein’s praise of Lenard’s “groundbreaking experiments” in [13] seems like a grim joke.
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particles in the matter description. Further note that the models presented here, like most of the
models considered elsewhere, are of a hybrid form with a non-relativistic quantum mechanical
description of the electrons, or a simplification thereof, and a relativistically invariant definition
of the quantized photon field. This is adequate because the emission and absorption of visible
light involves low energies (of about 1 eV or less). For Bohr’s frequency condition (3) as a
manifestation of the photoelectric effect it is important that the electrons are not free but bound
to an atomic nucleus or several nuclei by the attractive potential these generate.

The Hamiltonian is either directly given in, or easily converted to, a perturbative form
Hg = H0 +gW1 +g2W2, where H0 = Hel⊗1ph +1el⊗Hph represents the sum of the energies
of the electrons and the photon field. The electron Hamiltonian Hel is semibounded, the photon
Hamiltonian is positive Hph ≥ 0, thus H0 is a semibounded self-adjoint operator, too. Matter
and light are coupled to one another by the interaction operator gW1 + g2W2 which is a small
perturbation of H0 in the sense that the coupling constant g ∈ R is small in absolute value and
W1 and W2 are relatively bounded perturbations of H0. We exemplify this general framework
by three concrete realizations, namely, Pauli-Fierz, Friedrichs, and spin-boson Hamiltonians.
We start with the Pauli-Fierz model.

Pauli-Fierz Model. Following [2], the Hilbert space Hel ⊆ h⊗N of N electrons in matter is
a subspace of the N -fold tensor product of the one-electron Hilbert space h = L2(R3)⊗Cq of
square-integrable functions with q spin components. While quantitative results depend on the
number N of electrons and the spin 1

2
(q − 1) of the electrons in detail, the basic mechanism

of absorption and emission of radiation by these electrons is independent of N and q. For
this reason we restrict this exposition to N = q = 1 and consider a Pauli-Fierz Hamiltonian
with Hel = L2(R3). Choosing Coulomb gauge, the photon Hilbert space Fph = Fb(hph) is the
boson Fock space over the one-photon Hilbert space hph = L2(R3×{±}) of square-integrable,
transversal vector fields. The dynamics of the system is generated by the Hamiltonian resulting
from minimal coupling of the quantized magnetic field to the electron,

Hg =
(
− i∇x − α3/2Aκ(αx)

)2
+ V (x)⊗ 1ph + 1el ⊗Hph

= H0 + gW1 + g2W2 , (4)

where g3/2 = α ≈ 1/137 is the fine structure constant and H0 = Hel ⊗ 1ph + 1el ⊗Hph, W1,
and W2 result from expanding the square in (4) as

Hel = −∆ + V (x) , Hph =
∑
µ=±

ˆ
ω(k) a∗µ(k) aµ(k) d3k , (5)

W1 = 2i Aκ(αx) · ∇x , W2 = A2
κ(αx) . (6)

Here, ω(k) = |k| is the photon dispersion relation, a∗µ(k) and aµ(k) are the usual photon
creation and annihilation operators (that is, operator-valued distributions) fulfilling the canon-
ical commutation relations [aµ(k), aν(k

′)] = [a∗µ(k), a∗ν(k
′)] = 0, [aµ(k), a∗ν(k

′)] = δ(k −
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k′)δµ,ν 1ph, and aµ(k)Ω = 0, Ω ∈ Hph being the normalized vacuum vector. Furthermore,

Aκ(x) =

√
2

π

∑
µ=±

ˆ
κ
(
|k|
)

|k|1/2 vλ(k)
{
e−ik·x a∗µ(k) + eik·x aµ(k)

}
d3k (7)

is the magnetic vector potential with an ultraviolet cutoff κ : R+
0 → [0, 1] which obeys

κ(0) = 1, is of sufficiently rapid decay at ∞, and is often assumed to fulfill other regular-
ity requirements such as smoothness or even analyticity. Moreover, v±(k) ∈ R3, v±(k) ⊥ k,
are normalized transversal polarization vectors.

The spatial units chosen in (4) are the Bohr radius for electrons and the Bohr radius times
1/α for photons. This choice has the advantage that, for real matter like the hydrogen atom, the
charge entering the Coulomb potential V (x) = −|x|−1 equals one and is, hence, independent
of the coupling constant g = α3/2. Its price is that it necessitates a redefinition of the ultraviolet
cutoff momentum scale. Note that W1 and W2 in (6) depend on g, as well, but their relative
bounds w.r.t. H0 are uniform in g → 0. The model described in (4)-(7) is called the standard
model of non-relativistic quantum electrodynamics in [2].

Given the perturbative formHg = H0 +gW1 +g2W2 of the Pauli-Fierz Hamiltonian, where
|g| � 1 is a small coupling constant, it is natural to start the study of its spectral properties by
considering the unperturbed Hamiltonian H0 = Hel⊗1ph +1el⊗Hph. For H0 the Schrödinger
equation can be solved by separation of variables, leading to

σ(H0) = σ(Hel) + σ(Hph) = σ(Hel) +R+
0 = [e0,∞) , (8)

where e0 = inf σ(Hel) > −∞ is the ground state energy of the matter system. If the electric
potential V (x) is such that the spectrum of Hel consists of discrete eigenvalues e0, e1, e2, . . . <
Σ below a continuum threshold Σ = inf σess(Hel), then the excited levels e1, e2, . . . ∈ (e0,∞)
are eigenvalues of H0 embedded in the continuum [e0,∞), and any λ ≥ Σ is a generalized
eigenvalue of H0. While the eigenvectors corresponding to e0, e1, e2, . . . < Σ are exponentially
localized, the solutions of the Schrödinger equation corresponding to generalized eigenvalues
λ > Σ are not normalizable.

If g 6= 0 then the ground state energy E0(g) := inf σ(Hg) = e0 + Γ0g
2 + O(g3) is a

simple eigenvalue ofHg corresponding to a normalized eigenvector Φgs, which is exponentially
localized in the electron variable in the sense that ‖(eβ|x| ⊗ 1)Φgs‖ <∞, for sufficiently small
β > 0. More generally, the spectral projection χΣg−δ := 1[Hg < Σg − δ] onto energies below
Σg − δ is exponentially localized, for any δ > 0. Here, Σg := inf σ(H

(free)
g ) is the ionization

threshold, i.e., the ground state energy of the Hamiltonian H(free)
g = Hg − V (x)⊗ 1ph without

binding potential, see [16]. This exponential localization is a key input for the proof [15, 1] of
the existence and, in fact, completeness [15] (for massive bosons) of asympotic creation and
annihilation operators a∗out/in(f), aout/in(f), f ∈ hph, as strong limits t→ ±∞ of time-evolved
field operators, provided these are restricted to HΣ :=

⋃
δ>0 RanχΣ−δ. Known as Rayleigh

scattering, this model takes only scattering processes into account that do not ionize the atom
or molecule under consideration. The ground state vector Φgs acts as a vacuum vector for the
asympotic annihilation operators aout/in(f) with supp(f) := supp[f(·,+)] ∪ supp[f(·,−)] ⊆
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B
(
~0,Σ−E0(g)

)
. Scattering states are of the form a∗out/in(f)Φgs ∈ HΣ, where the photon cloud

a∗out/in(f) := a∗out/in(f1) · · · a∗out/in(fm) , f = (f1, . . . , fm) ∈ hmph (9)

is defined for photon wave functions f = (f1, . . . , fm) ∈ hmph whose supports fulfill supp(f1)+

. . .+ supp(fm) ⊆ B
(
~0,Σ−E0(g)

)
. For these scattering states, an algorithm for the expansion

of the matrix elements

Sg(f, g) :=
〈
a∗out(f)Φgs

∣∣a∗in(g)Φgs

〉
(10)

of the scattering matrix Sg in powers of the coupling constant g has been developed in [1].
While the formulae resulting from this algorithm are quite involved, to leading order in g the
total scattering cross section for the simplest possible case f = g = (f) ∈ hph, with supp(f) ⊆
B
(
~0,Σ − E0(g)

)
, is vanishing unless ej − e0 ∈

{
|k| : k ∈ supp(f)

}
, for some j ≥ 1, which

is a justification of Bohr’s frequency condition (3); see Section V in [1].

Lee-Friedrichs Model. A somewhat simpler situation has been considered in [5], where a
variant of the Lee-Friedrichs model [14, 20] is studied. Namely, assuming the usual spectral
properties of the electron dynamics right away, the electron Hilbert space Hel = L2(R3) ⊕ C
contains a continuum of scattering states of energies above Σ = 0 and one single bound state
at energy e0 < Σ. That is, the electron Hamiltonian is block-diagonal,

Hel :=

(
−∆ 0

0 e0

)
. (11)

It is furthermore customary to neglect the transversal nature of the photons and simply discard
the polarization variable, i.e., passing to hph = L2(R3). The interaction is of the form W1 =´
{G(k)⊗ a∗(k) +G∗(k)⊗ a∗(k)

}
d3k, W2 = 0, where G ∈ L2[R3;B(Hel)] is given by

G(k) :=

(
B(k) b↑(k)
b↓(k) 0

)
. (12)

Here, b↑(k) : C → L2(R3), b↓(k) : L2(R3) → C, and B(k) ∈ B[L2(R3)] fulfill further
regularity requirements sufficiently strong to ensure the existence of asymptotic creation and
annihilation operators a∗out/in(f), aout/in(f), for all f ∈ hph, as strong limits t→ ±∞ of time-
evolved field operators. Similar to the Pauli-Fierz model, the ground state energy E0(g) :=
inf σ(Hg) = e0 + Γ0g

2 + O(g3) is a simple eigenvalue of Hg = H0 + gW1, with H0 =
Hel⊗1ph +1ph⊗Hph, for sufficiently small |g| > 0. As before, the corresponding normalized
ground state eigenvector Φgs acts as a vacuum vector for the interacting model and is annihilated
by aout/in(f).

In contrast to [1] which takes only scattering processes between bound states of the atom
or molecule into account, the model defined in [5] focuses on ionization processes exclusively.
The least transported charge defined in [5] by

Qinf(Ψ) := lim inf
R→∞

lim inf
t→∞

∥∥∥∥(1[|x| > R] 0
0 0

)
e−itHgΨ

∥∥∥∥2

(13)
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measures the fraction of a given initial state Ψ ∈ H = Hel ⊗ Fph that is transported to∞ by
the time evolution, eventually. It is proved in [5] that, to leading order in g,

Qinf
(
a∗out(f)Φgs

)
= (14)

(2π)2g2
∥∥a∗out(f)Φgs

∥∥2
m∑
j=1

ˆ ∣∣∣∣ ˆ δ
(
p2 − E0(g)− |k|

)
ρ̂(p, k) fj(k) d3k

∣∣∣∣2 d3p ,

for f = (f1, . . . , fm) ∈ hmph and a∗out(f) as in (9), where ρ̂ depends on B and b↑,↓ that enter
the coupling matrix G. Eq. (14) is a fairly explicit mathematical justification of Einstein’s
condition (2), for the condition that the support of the photon wave functions fj must in-
clude vectors k of magnitude bigger than |E0(g)|, which is the work function ∆E for this
model. Moreover, (14) is additive in the single photon wave functions fj , but not in the sum
of their energies which would be the energy (expectation value) of the photon cloud f . So,
if supp(f1), . . . , supp(fm) ⊆ B

(
~0, |E0(g)|

)
then none of the photons f1, . . . , fm in the cloud

ionizes the atom and Qinf
(
a∗out(f)Φgs

)
vanishes to order g2 - no matter how big m is, that is,

how many photons the cloud contains.

Spin-Boson Model. The third model presented here is the spin-boson model, for which the
electron variable is reduced to a two-level atom with a Hilbert space Hel = C

2 that only
contains the ground state level at energy e0 = 0 and an excited atomic state at energy e1 > e0.
The electron Hamiltonian is the diagonal 2× 2 matrix

Hel :=

(
e1 0
0 e0

)
, (15)

and the interaction is of the form W1 =
´ {

G(k)⊗ a∗(k) +G∗(k)⊗ a∗(k)
}
d3k, W2 = 0, with

G(k) :=

(
0 b(k)
b(k) 0

)
, (16)

where b ∈ hph is assumed to fulfill suitable regularity requirements specified in [7, 6]. In par-
ticular, it is real-valued and it only depends on the radial variable. The polarization variable is
again neglected and hph = L2(R3). The spin-boson model is widely used in physics and chem-
istry and has been proved to be very relevant both in the experimental and theoretical aspects of
science, and applications. In order to describe the importance of this model, we quote Nitzan
[22]: “In a generic quantum mechanical description of a molecule interacting with its thermal
environment, the molecule is represented as a few level system (in the simplest description just
two, for example, ground and excited states) and the environment is often modeled as a bath of
harmonic oscillators. The resulting theoretical framework is known as the spin-boson model, a
term that seems to have emerged in the Kondo problem literature (which deals with the behavior
of magnetic impurities in metals) during the 1960s, but is now used in a much broader con-
text. Indeed, it has become one of the central models of theoretical physics, with applications
in physics, chemistry, and biology. Transitions between molecular electronic states coupled to
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nuclear vibrations, environmental phonons, and photon modes of the radiation field fall within
this class of problems.” Recall that, for g = 0, the ground state energy E0(0) = e0 lies at the
bottom of the spectrum σ(H0) = [e0,∞), and the excited energy e1 ∈ (e0,∞) is an embedded
eigenvalue. As for Pauli-Fierz and Lee-Friedrichs-type models, if g 6= 0 is sufficiently small in
absolute value then the ground state energy E0(g) := inf σ(Hg) = e0 + Γ0g

2 + O(g3) of the
spin-boson Hamiltonian is a simple eigenvalue of Hg with a corresponding normalized eigen-
vector Φgs. The embedded eigenvalue E1(g = 0) := e1, however, is (generically) unstable
under perturbations and turns into a resonance E1(g), if two-level atom and radiation field are
coupled to one another, g 6= 0. Here E1(g) = e1 + Γjg

2 + O(g3) ∈ C− is an eigenvalue in
the lower half plane of a suitable (non-self-adjoint) complex deformation Hg(θ) of Hg. The
precise formulation of this fact and its proof are nontrivial and cannot be done by usual regular
perturbation theory for isolated eigenvalues. It rather involves a renormalization group or a
multi-scale analysis, the latter being the preferred technique in [7, 6]. We remark that a similar
notion of resonances can be established for all excited eigenvalues ej > e0 of the Pauli-Fierz
model, too [3, 4].

In [7, 6] it was shown that for the spin-boson model the asympotic creation and annihilation
operators as introduced above for the Pauli-Fierz and the Lee-Friedrichs-type models exist.
We denote by Tg the transition matrix describing scattered bosons that are not in the forward
direction. An explicit formula for the scattering matrix Sg =: 1 + Tg in case of the scattering
of an incoming one-photon state l ∈ Fph and an outgoing one-photon state h ∈ Fph has been
derived,

Tg(h, l) =

ˆ
h(k) l(k′) δ

(
|k| − |k′|

)
tg(k, k

′) d3k d3k′ , (17)

where the distribution kernel tg is given by a sum of matrix elements of the resolvent of the
complex deformed Hamiltonian Hg(θ) between complex deformed vectors,

tg(k, k
′) := −2πig2 b(k) b(k′)

{〈
σ1Φθ̄

gs

∣∣∣ (Hg(θ)− E0(g)− |k′|
)−1

σ1Φθ
gs

〉
+
〈
σ1Φθ

gs

∣∣∣ (Hg(θ̄)− E0(g)− |k′|
)−1

σ1Φθ̄
gs

〉}
, (18)

with Im(θ) > 0 and σ1 :=
(

0 1
1 0

)
being the first Pauli matrix. The leading order term in Eq. (17)

is

TP,g(h, l) = (19)

4πi g2‖Φ0
gs‖−2

ˆ ∞
0

dr G(r)

(
Re[E1(g)]− E0(g)

(r + E0(g)− E1(g))(r − E0(g) + E1(g))

)
,

where

G(r) :=

ˆ
dΣ dΣ′ r4 h(r,Σ) l(r,Σ′) b(r)2 . (20)

Here, we denote by (r,Σ) the radial and the angular variables of k, and Σ′ is the angular variable
of k′. We identify b(k) ≡ b

(
|k|
)
, and recall that b only depends on the radial variable. Since
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the real part of E0(g) − E1(g) is negative, the function in (19) features only one bump, near
r = Re[E1(g)]−E0(g), and the same happens for the scattering cross section (see Remark 2.4
in [7]). This is exactly a mathematical justification of Eq. (3): We consider an experiment
in which a boson beam is incident on a target (a two-level atom), and we localize a boson
detector in a non-forward direction. It will not detect the bosons that pass through the target,
but only those that are scattered. For this reason, the transition matrix is the right object to
describe detected bosons. Eq. (19) implies that only bosons whose energies r are close to the
real part of E1(g) − E0(g) are scattered, up to a leading order in g. Of course, (3) is only an
approximation because in reality boson spectral lines have a strictly positive width, as E1(g)
does not lie on the real axis but has a strictly negative imaginary part. Notice that the two-level
atom approximation (or an atom with a finite number of levels) is valid when the energies of
the emitted boson beam (which might be produced by lasers) correspond to the energies that
are considered in the model.
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International Congress on Theoretical and Mathematical Physics,

1972

In 1972, the Steklov Institute organized and hosted the first ICMP in Moscow, using for the
first time the M ∩ Φ logo.

Figure 1: The original logo in 1972, courtesy of V. Zagrebnov.

The actual title used was the “International Congress on Theoretical and Mathematical Physics.”
In those times of great tension between East and West it was a unique opportunity for members
of our community, who only knew of scientists in the other part of the world through publi-
cations, to meet in person and work together. It was not at all clear that the meeting would
be repeated and become a regular event, but the idea took root, and in just a few years the
IAMP was formally incorporated and began sponsoring regular International Congresses. A
conference proceeding was published in 1975 (see Figure 2). Jim Glimm writes:

I recall clearly the Moscow meeting, and the excitement of meeting for the
first time in person Sinai and Dobrushin. I also met Bogoliubov at the conference
dinner. I think that all the participants regarded the meeting as a big success. IAMP
arose from the strong feeling of enthusiasm and a desire for continued international
cooperation among the participants. The drafting of an organizational plan for
IAMP led to extended negociations, also resolved, and the formation of IAMP.
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Figure 2: Picture credit: V. Zagrebnov.

Arthur Jaffe reminisces:

I remember with great joy the 1972 meeting at the Steklov Institute in Moscow.
Not only did I meet Roland Dobrushin and Robert Minlos for the first time, but I
had the opportunity to discuss phase transitions with them. Dobrushin had been in-
strumental in making Peierls’ argument into mathematics, to prove the existence of
phase transitions for Ising-type systems; phase transitions and symmetry breaking
were assumed by physicists to occur in Φ4 quantum field theory, although in 1972
there was no mathematical theory for that phenomenon. The 1972 Moscow meet-
ing also provided the opportunity to meet Yasha Sinai, Misha Polivanov, Nicolai
Bogoliubov, and many others for the first time, as well as to see friends like Ludwig
Faddeev and Ivan Todorov whom I had met previously.
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Figure 3: Bololiubov speaking in 1972. Picture credit: V. Gribov.

Everyone with whom I interacted at the Moscow meeting was elated by pos-
sibilities to continue meeting in the future. One year later I happened to visit
Moscow for a couple of days, after attending a meeting in Tashkent. That pro-
vided an opportunity for Polivanov to introduce me to Albert Schwarz and Israel
Gelfand. Shortly afterward in 1976, Dobrushin organized a wonderful meeting in
Repino, which I attended instead of staying in Cambridge for Harvard graduation.
During the conference dinner I asked why Gelfand was absent, as I had been told
he was going to come and looked forward to seeing him again. Dynkin broke out
laughing and said, ‘Gelfand is at Harvard, where he is getting an honorary degree.’
Those were the “old days” at my university, when many surprises were revealed at
the graduation ceremony.

At the 1974 international conference in Warsaw organized by Krzysztof Maurin
and Richard Raczka, I recall the dinner at which Moshe Flato was quite active
in advocating the formation of IAMP. Some time after that, and after much more
discussion, Huzihiro Araki wrote down the structure of the new organization for its
incorporation in Geneva. I believe that the official launch of IAMP was recognized
during the 1976 international meeting at La Sapienza in Rome.

A Picture Gallery from 1972

We are very fortunate that many pictures were taken at the time by Vitalii Gribov, and we are
grateful both to him and to Andrei Pogrebkov for scanning them and sharing them with the
Bulletin. The gallery is located at https://www.iamp.org/bulletins/ICMP1972/.

36 IAMP Bulletin, October 2022

https://www.iamp.org/bulletins/ICMP1972/index.html


International Congress on Theoretical and Mathematical Physics, 1972

If you can add to or correct the identification of the people appearing in this gallery, please
write us at iampbulletin (at) gmail.com.
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Time’s Arrow

Time’s Arrow

Scientific anniversaries

1872. Ludwig Boltzmann’s paper Weitere Studien über das Wärmegleichgewicht von Molekülen
appears in the October issue of Sitzungsberichte der kaiserlichen Akademie der Wissenschaften.
It contains the derivation of the Boltzmann transport equation and the proof of the H theorem
for its solutions.

1922. Albert Einstein received the delayed 1921 Nobel Prize for “for his discovery of the law
of the photoelectric effect.” See the related article in this issue of the Bulletin.

1922. Nils Bohr received the 1922 Nobel Prize for “the investigation of the structure of atoms
and of the radiation emanating from them.”

1972. John Bardeen, Leon Neil Cooper and John Robert Schrieffer received the Nobel Prize
for “their jointly developed theory of superconductivity, usually called the BCS-theory.”

1972. In December the first ICMP took place in Moscow. See the related article in this issue of
the Bulletin.

Awards and honors

The 2022 Autumn Prize of the Mathematical Society of Japan has been awarded to Yoshiko
Ogata “for her outstanding contributions to studies on quantum spin systems.”

The ICTP Dirac Medal has been awarded to Joel Lebowitz, Elliott Lieb, and David Ruelle,
“for groundbreaking and mathematically rigorous contributions to the understanding of the
statistical mechanics of classical and quantum physical systems.” A youtube video explaining
their award-winning work is at https://www.youtube.com/watch?v=lKxXTKf90Lg.

The Service Award of the Association for Women in Mathematics has been won by Tracy
Weyand.

Lost luminaries

Thomas Kappeler, 30 May, 2022.

Steven Zelditch, 11 September, 2022.

Readers are encouraged to send items for “Time’s Arrow” to bulletin@iamp.org.
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News from the IAMP Executive Committee

News from the IAMP Executive Committee

New individual members

IAMP welcomes the following new members

1. PROF. NINA AMINI, L2S, CentraleSuélec, Gif-sur-Yvette, France

2. BARBARA ROOS, Institute of Science and Technology, Austria

3. DR. FATIMA ZOHRA GOFFI, Karlsruhe Institute of Technology, Germany

4. PROF. WENCAI LIU, Texas A&M University, Texas, USA

5. PROF. RODRIGO BISSACOT, University of São Paulo, Brazil

6. DR. MATTEO GALLONE, SISSA, Trieste, Italy

Recent conference announcements

A tale of Mathematics and Physics: A tribute to Krzysztof Gawedzki

November 7 - 10, 2022, École Normal Superieure, Lyon, France.

123 Statistical Mechanics Conference

December 18-20, 2022

The Analysis of Relativistic Quantum Systems

January 9 - 13, 2023, CIRM, Marseille, France.

For an updated list of academic job announcements in mathematical physics and related fields
visit

http://www.iamp.org/page.php?page=page_positions

Michael Loss (IAMP Secretary)

IAMP Bulletin, October 2022 39

https://gawedzki2022.sciencesconf.org
https://cmsr.rutgers.edu/news-events-cmsr/statistical-mechanics-conference/icalrepeat.detail/2022/12/18/1959/-/123rd-statistical-mechanics-conference
https://conferences.cirm-math.fr/2023-calendar.html
http://www.iamp.org/page.php?page=page_positions


Contact coordinates for this issue

VOLKER BACH

Institut für Analysis und Algebra
Carl-Friedrich-Gauß-Fakultät
Technische Universität Braunschweig
Universitätsplatz 2
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