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It is my great pleasure and honor to briefly discuss Yoshiko Ogata’s research ac-
complishments on this occasion of her Poincaré prize. The citation of the prize reads:
“For groundbreaking work on the mathematical theory of quantum spin systems,
ranging from the formulation of Onsager reciprocity relations to innovative contribu-
tions to the theory of matrix product states and of symmetry-protected topological
phases of infinite quantum spin chains.”

Yoshiko received her PhD from the University of Tokyo, where she was a physics
major. She was a posdoc at University of Marseille and UC Davis, and then joined
Kyushu University as a faculty member. In 2009, she moved to the department of
mathematics of the University of Tokyo, where she is now a full professor.

Yoshiko has been working on problems in quantum many-body systems by using
the operator algebraic formulation. She has solved, and is solving, a variety of the most
difficult problems in physics that involve infinite degrees of freedom by developing
precise, sometimes deep, mathematical tools. Let me discuss some examples.

With Vojkan Jaksic and Claude-Alain Pillet, Yoshiko studied the general problem
of non-equilibrium steady states, and justified the linear response theory, especially
the Onsager reciprocal relations. The Onsager relations are still among the most
essential results in non-equilibrium physics, and I would say that this is a fundamental
contribution to a traditional problem in physics.

In the field of quantum spin systems, Yoshiko has made several fundamental con-
tributions on problems that are fashionable even in the physics community.

To explain her contributions, I would like to recall Duncan Haldane’s famous
discovery, which brought him the 2016 Nobel prize in physics, about low energy
properties of the antiferromagnetic Heisenberg chain, whose Hamiltonian is

H =
∑
j∈Z

Sj · Sj+1,

where (Sj)
2 = S(S + 1) with the spin quantum number S = 1/2, 1/3/2, . . .. Haldane

conjectured that when, and only when, S is an integer this model has a unique gapped
ground state, namely, a unique ground state accompanied by a nonzero energy gap
immediately above the ground state energy.

This conjecture has not yet been solved, but it was proved that a similar Hamil-
tonian

H1 =
∑
j∈Z

Sj · Sj+1 +
1

3
(Sj · Sj+1)

2,
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with S = 1 has a unique gapped ground state which is believed to be qualitatively
similar to the ground state of the original Heisenberg chain. But it is also easy to
write down a model that has a unique gapped ground state for a trivial reason. For
example the S = 1 chain with the Hamiltonian

H0 =
∑
j∈Z

(Sz
j )
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clearly has a unique gapped ground state, which is the tensor product of the eigenstate
|0⟩j of Sz

j . It is then natural to ask whether these two ground states are “smoothly
connected”.

To be precise we say that the models with H0 and H1 are smoothly connected
if there exists a family of Hamiltonians Hs, where s ∈ [0, 1], with a unique gapped
ground state that smoothly interpolates between H0 and H1. It was conjectured
by Chen, Gu, and Wen in 2011 that H0 and H1 are indeed smoothly connected
if one is allowed to use any short ranged Hamiltonian Hs to interpolate between
them. This fact is now known rigorously. It follows, e.g., from Yoshiko’s extensive
classification theory of matrix product states published in 2016 and 2017 as a trilogy
in Communications in Mathematical Physics.

But this is not the end of the story. Recall that both H0 and H1 have time-reversal
symmetry, i.e., invariant under the transformation Sj → −Sj for all j ∈ Z. It was
conjectured by Gu and Wen in 2009 that if we require interpolating Hamiltonians Hs

to also possess time-reversal symmetry then H0 and H1 are never connected smoothly.
In this case the models with H0 and H1 are said to belong to different symmetry
protected topological phases. This is indeed the fact that Yoshiko proved in her
groundbreaking paper appeared in 2018 and published in CMP last year. In this and
the following paper published this year in CMP, Yoshiko defined indices for a unique
gapped ground state of a spin chain with certain symmetry. The indices take value in
the second group cohomology H2(G,U(1)) of the symmetry group, and are proved to
provide classifications of symmetry protected topological phases. We should note that
such indices were already defined by Pollmann, Turner, Berg, and Oshikawa back in
2010, but only for a limited class of states, namely, injective matrix product states,
while Yoshiko’s index theories cover an arbitrary unique gapped ground state. In
this sense we can say that Yoshiko has completed the theory of symmetry protected
topological phases in quantum spin chains. It is simply amazing that fully rigorous
and general mathematical theory was developed only nine years after the original
heuristic proposal. But this is not yet the end of the story. Yoshiko never stops.
She has already completed the theory of symmetry protected topological phases of
two-dimensional quantum spin systems, as we can hear from her in the next session!

I cannot help discussing one more work of Yoshiko’s which is my favorite (and
Yoshiko’s favorite too, I hear). Suppose that there are n sequences of hermitian

matrices H
(1)
i , . . . , H

(n)
i with i ∈ N which commute with each other asymptotically,
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i.e.,
lim
i↑∞

∥[H(α)
i , H

(β)
i ]∥ = 0,

for any α, β = 1, . . . , n. We then ask whether the sequences of matrices can be ap-
proximated by sequences of mutually commuting hermitian matrices, more precisely,
whether there exist n sequences of hermitian matrices Y

(1)
i , . . . , Y

(n)
i such that

[Y
(α)
i , Y

(β)
i ] = 0,

for all α, β = 1, . . . , n and i ∈ N, and

lim
i↑∞

∥H(α)
i − Y

(α)
i ∥ = 0,

for all α = 1, . . . , n.
This is indeed a famous classical problem, and it is well known that such commut-

ing approximations do not exist in general if n ≥ 3. In her paper in 2013 published
in Journal of Functional Analysis, Yoshiko proved that commuting approximations
always exist if the original non-commuting matrices are taken as the densities of ex-
tensive quantities of a quantum spin system. This result is natural for physicists
since thermodynamics is a classical theory where all quantities commute, and these
densities are precisely thermodynamic objects.

To prove the theorem, Yoshiko studies projections onto the spaces where these
extensive quantities take almost constant values, and then estimates the ranks of
the projections by means of the entropy functions. This estimate, with an operator
algebraic technique, enables her to construct the desired set of commuting matrices.
I would say that the proof is an example of ideal combination of ideas from statistical
mechanics and techniques from operator algebra.

For me , It was a truly exciting experience to witness rapid progress in mathe-
matical physics made by Yoshiko. But I am sure that this is far from the end. I am
looking forward to many more new beautiful insights from Yoshiko.

I would like to end by congratulating Yoshiko on this occasion of her winning the
Henri Poincaré Prize. 緒方さん、おめでとうございます。

Hal Tasaki, August 2021
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